Change of velocity and ergodicity in flows and in Markov semi-groups

Springer Science and Business Media LLC - Tập 39 - Trang 197-211 - 1977
Michael Lin1, John Montgomery2, Robert Sine2
1The Ohio State University, Columbus, USA
2University of Rhode Island, Kingston, USA

Tóm tắt

Let {T(t)}t≧0 be a strongly continuous semi-group of Markov operators on C(X) with generator G. If m∃C(X) is strictly positive, mG generates a semigroup. If {T(t)} is a group given by a flow, m may have isolated zeros and, under some regularity conditions, mG will still generate a flow, constructed explicitly. The connection between some ergodic properties of the new and original flow is studied. For the Markov semi-groups, the new one is strongly ergodic if and only if the original one is strongly ergodic.

Tài liệu tham khảo

Alaoglu, L., Birkhoff, G.: General ergodic theorems. Ann. of Math. (2) 41, 293–309 (1940) Chaterji, S.D.: Les Martingales et leurs applications analytiques. In Ecole d'été de Probabilités: Processus stochastique. Berlin-Heidelberg-New York: Springer 1973 Chernoff, P., Marsden, J.: On continuity and smoothness of group actions. Bull. Amer. Math. Soc. 76, 1044–1049 (1970) Coddington, E.A., Levinson, N.: Theory of ordinary differential equations. New York: McGraw-Hill 1955 Dorroh, J.R.: Contraction semi-groups in a function space. Pacific J. Math. 19, 35–38 (1966) Dunford, N., Schwartz, J.: Linear operators, part I. New York: Interscience 1958 Gustafson, K.: A note on left multiplication of semi-group generators. Pacific J. Math. 24, 463–465 (1968) Hartman, P.: Ordinary differential equations. Baltimore: John Hopkins University 1973 Humphries, P.D.: Change of velocity in dynamical systems. J. London Math. Soc. (2), 7, 747–757 (1974) Kryloff, N., Bogoliouboff, N.: La théorie générale de là mesure dans son application à l'étude des systèmes dynamiques de la méchanique non-linéaire. Ann. of Math. 38, 65–113 (1937) Lin, M.: On the uniform ergodic theorem II. Proc. Amer. Math. Soc. 46, 217–225 (1974) Lloyd, S.P.: On the mean ergodic theorem of Sine. [To appear] Lumer, G.: Semi-inner product spaces. Trans. Amer. Math. Soc. 100, 29–43 (1961) Lumer, G., Phillips, R.S.: Dissipative operations in a Banach space. Pacific J. Math. 11, 679–780 (1961) Marcus, B.H.: Unique ergodicity of some flows related to axiom A differmorphisms. Notices Amer. Math. Soc. 22, A-233 (1975) Masani, P.: Ergodic theorems for locally integrable semi-groups of continuous linear operators on a Banach space. Advances in Math. (To appear. Abstract presented at International congress of Mathematicians, Vancouver, 1974) Nagel, R.: Mittelergodische Halbgruppen Linearer operatoren. Ann. Inst. Fourier 23, 75–87 (1973) Nemytskij, V., Stepanoff, V.: Qualitative theory of differential equations. Princeton: Princeton University Press 1960 Osgood, W.: Beweis der Existenz linear Lösung der Differentialgleichung dy/dx= f(x, y) ohne der Cauchy-Lipshitzschen Belingung. Monatsh. Math. Phys. 9, 331–345 (1898) Oxtoby, J.C.: Stepanoff flows on the torus. Proc. Amer. Math. Soc. 4, 982–987 (1953) Oxtoby, J.C.: Ergodic sets. Bull. Amer. Math. Soc. 58, 116–136 (1952) Sato, K., Ueno, T.: Multi-dimensional diffusion and the Markov process on the boundary. J. Math. Kyoto Univ. 4, 529–605 (1965) Sine, R.: A mean ergodic theorem. Proc. Amer. Math. Soc. 24, 438–439 (1970) Sine, R.: Geometric theory of a single Markov operator. Pacific J. Math. 27, 155–166 (1968) Wallach, S.: The differential equation y'=f(y). Amer. J. Math. 70, 345–350 (1940)