Change in carbonate budget and composition during subduction below metal saturation boundary

Geoscience Frontiers - Tập 14 - Trang 101463 - 2023
Anton Shatskiy1, Anton V. Arefiev2, Konstantin D. Litasov2
1Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia
2Vereshchagin Institute for High Pressure Physics, Russian Academy of Sciences, Troitsk, Moscow 108840, Russia

Tài liệu tham khảo

Abersteiner, 2019, Composition and emplacement of the Benfontein kimberlite sill complex (Kimberley, South Africa): Textural, petrographic and melt inclusion constraints, Lithos, 324, 297, 10.1016/j.lithos.2018.11.017 Agashev, 2008, Primary melting sequence of a deep (> 250 km) lithospheric mantle as recorded in the geochemistry of kimberlite-carbonatite assemblages, Snap Lake dyke system, Canada. Chem. Geol., 255, 317, 10.1016/j.chemgeo.2008.07.003 Arefiev, 2018, Melting and subsolidus phase relations in the system K2CO3-MgCO3 at 3 GPa, High Pressure Res., 38, 422, 10.1080/08957959.2018.1541988 Arefiev, 2019, The system K2CO3-CaCO3 at 3 GPa: link between phase relations and variety of K-Ca double carbonates at ≤ 0.1 and 6 GPa, Phys. Chem. Minerals, 46, 229, 10.1007/s00269-018-1000-z Bekhtenova, 2022, Solidus and melting of carbonated phlogopite peridotite at 3–6.5 GPa: Implications for mantle metasomatism, Gondwana Res., 101, 156, 10.1016/j.gr.2021.07.023 Binck, 2022, Synthesis of calcium orthocarbonate, Ca2CO4-Pnma at PT conditions of Earth’s transition zone and lower mantle, Am. Mineral., 107, 336, 10.2138/am-2021-7872 Brenker, 2007, Carbonates from the lower part of transition zone or even the lower mantle, Earth Planet. Sci. Lett., 260, 1, 10.1016/j.epsl.2007.02.038 Bulanova, 1987, Magnesite peridotite assemblage in diamond from the Mir pipe, Dokl. Akad. Nauk SSSR, 295, 1452 Bulatov, 2019, Ferropericlase crystallization under upper mantle conditions, Contrib. Mineral. Petrol., 174, 45, 10.1007/s00410-019-1582-6 Buzgar, 2009, The Raman study of certain carbonates. Analele Stiintifice de Universitatii AI Cuza din Iasi, Sect., 2, Geologie 55, 97 Dalton, 1998, Carbonatitic melts along the solidus of model lherzolite in the system CaO-MgO-Al2O3-SiO2-CO2 from 3 to 7 GPa, Contrib. Mineral. Petrol., 131, 123, 10.1007/s004100050383 Dalton, 1998, The continuum of primary carbonatitic-kimberlitic melt compositions in equilibrium with lherzolite: Data from the system CaO-MgO-Al2O3-SiO2-CO2 at 6 GPa, J. Petrol., 39, 1953 Day, 2012, A revised diamond-graphite transition curve, Am. Mineral., 97, 52, 10.2138/am.2011.3763 Dobretsov, 2012, Deep carbon cycle and geodynamics: the role of the core and carbonatite melts in the lower mantle, Russ. Geol. Geophys., 53, 1117, 10.1016/j.rgg.2012.09.001 Dobson, 1996, In-situ measurement of viscosity and density of carbonate melts at high pressure, Earth Planet. Sci. Lett., 143, 207, 10.1016/0012-821X(96)00139-2 Dorfman, 2018, Carbonate stability in the reduced lower mantle, Earth Planet. Sci. Lett., 489, 84, 10.1016/j.epsl.2018.02.035 Druzhbin, 2022, New high-pressure, high-temperature CaCO3 polymorph, ACS Earth Space Chem., 6, 1506, 10.1021/acsearthspacechem.2c00019 Fedoraeva, 2019, The join CaCO3-CaSiO3 at 6 GPa with implication to Ca-rich lithologies trapped by kimberlitic diamonds, High Pressure Res., 39, 547, 10.1080/08957959.2019.1660325 Frost, 2008, The redox state of Earth's mantle, Annu. Rev. Earth Planet. Sci., 36, 389, 10.1146/annurev.earth.36.031207.124322 Gao, 2017, Ultradeep diamonds originate from deep subducted sedimentary carbonates, Sci. China Earth Sci., 60, 207, 10.1007/s11430-016-5151-4 Gavryushkin, 2014, Synthesis and crystal structure of new carbonate Ca3Na2(CO3)4 homeotypic with orthoborates M3Ln2(BO3)4 (M = Ca, Sr, and Ba), Cryst. Growth Des., 14, 4610, 10.1021/cg500718y Gavryushkin, 2021, Formation of Mg-orthocarbonate through the reaction MgCO3 + MgO = Mg2CO4 at Earth’s lower mantle P-T conditions, Cryst. Growth Des., 21, 2986, 10.1021/acs.cgd.1c00140 Grassi, 2011, The melting of carbonated pelites from 70 to 700 km depth, J. Petrol., 52, 765, 10.1093/petrology/egr002 Green, 1988, Mantle metasomatism by ephemeral carbonatite melts, Nature, 336, 459, 10.1038/336459a0 Hammouda, 2000, Ultrafast mantle impregnation by carbonatite melts, Geology, 28, 283, 10.1130/0091-7613(2000)28<283:UMIBCM>2.0.CO;2 Hernlund, 2006, A numerical model for steady-state temperature distributions in solid-medium high-pressure cell assemblies, Am. Mineral., 91, 295, 10.2138/am.2006.1938 Jablon, 2016, Most diamonds were created equal, Earth Planet. Sci. Lett., 443, 41, 10.1016/j.epsl.2016.03.013 Kamenetsky, 2009, How unique is the Udachnaya-East kimberlite? Comparison with kimberlites from the Slave Craton (Canada) and SW Greenland, Lithos, 112, 334, 10.1016/j.lithos.2009.03.032 Kamenetsky, 2004, Kimberlite melts rich in alkali chlorides and carbonates: A potent metasomatic agent in the mantle, Geology, 32, 845, 10.1130/G20821.1 Kaminsky, 2017 Kaminsky, 2016, A primary natrocarbonatitic association in the Deep Earth, Mineral. Petrol., 110, 387, 10.1007/s00710-015-0368-4 Kaminsky, 2009, Nyerereite and nahcolite inclusions in diamond: evidence for lower-mantle carbonatitic magmas, Mineral. Mag., 73, 797, 10.1180/minmag.2009.073.5.797 Kaminsky, 2011, Iron carbide inclusions in lower-mantle diamond from Juina, Brazil. Can. Mineral., 49, 555, 10.3749/canmin.49.2.555 Kaminsky, 2013, Carbonatitic inclusions in deep mantle diamond from Juina, Brazil: new minerals in the carbonate-halide association, Can. Mineral., 51, 669, 10.3749/canmin.51.5.669 Kerrick, 1998, Subduction of ophicarbonates and recycling of CO2 and H2O, Geology, 26, 375, 10.1130/0091-7613(1998)026<0375:SOOARO>2.3.CO;2 Kerrick, 2001, Metamorphic devolatilization of subducted marine sediments and the transport of volatiles into the Earth's mantle, Nature, 411, 293, 10.1038/35077056 Kerrick, 2001, Metamorphic devolatilization of subducted oceanic metabasalts: implications for seismicity, arc magmatism and volatile recycling, Earth Planet. Sci. Lett., 189, 19, 10.1016/S0012-821X(01)00347-8 Khawam, 2006, Solid-state kinetic models: basics and mathematical fundamentals, J. Phys. Chem. B, 110, 17315, 10.1021/jp062746a Klein-BenDavid, 2009, High-Mg carbonatitic microinclusions in some Yakutian diamonds - a new type of diamond-forming fluid, Lithos, 112, 648, 10.1016/j.lithos.2009.03.015 Kono, 2014, Ultralow viscosity of carbonate melts at high pressures, Nat. Commun., 5, 5091, 10.1038/ncomms6091 Lavrent’ev, Y.G., Karmanov, N.S., Usova, L.V.,, 2015, Electron probe microanalysis of minerals: Microanalyzer or scanning electron microscope?, Russ. Geol. Geophys., 56, 1154, 10.1016/j.rgg.2015.07.006 Litvin, 1997, Crystallization of diamond and graphite in the mantle alkaline-carbonate melts in the experiments at pressure 7–11 GPa, Dokl. Akad. Nauk, 355, 669 Logvinova, 2018, Carbonate–silicate–sulfide polyphase inclusion in diamond from the Komsomolskaya kimberlite pipe, Yakutia. Geochem. Int., 56, 283, 10.1134/S0016702918040079 Logvinova, 2019, Carbonatite melt in type Ia gem diamond, Lithos, 342–343, 463, 10.1016/j.lithos.2019.06.010 Lord, 2009, Melting in the Fe-C system to 70 GPa, Earth Planet. Sci. Lett., 284, 157, 10.1016/j.epsl.2009.04.017 Martirosyan, 2015, The reactions between iron and magnesite at 6 GPa and 1273–1873 K: Implication to reduction of subducted carbonate in the deep mantle, J. Mineral. Petrol. Sci., 110, 49, 10.2465/jmps.141003a Martirosyan, 2022, Interaction of carbonates with peridotite containing iron metal: Implications for carbon speciation in the upper mantle, Lithos, 428-429, 106817, 10.1016/j.lithos.2022.106817 Martirosyan, 2016, The CaCO3–Fe interaction: Kinetic approach for carbonate subduction to the deep Earth’s mantle, Phys. Earth Planet. Inter., 259, 1, 10.1016/j.pepi.2016.08.008 Martirosyan, 2019, The Mg-carbonate-Fe interaction: Implication for the fate of subducted carbonates and formation of diamond in the lower mantle, Geosci. Front., 10, 1449, 10.1016/j.gsf.2018.10.003 Martirosyan, 2019, Effect of water on the magnesite–iron interaction, with implications for the fate of carbonates in the deep mantle, Lithos, 326–327, 435, 10.1016/j.lithos.2019.01.004 Minarik, 1995, Interconnectivity of carbonate melt at low melt fraction, Earth Planet. Sci. Lett., 133, 423, 10.1016/0012-821X(95)00085-Q Navon, 1988, Mantle-derived fluids in diamond micro-inclusions, Nature, 335, 784, 10.1038/335784a0 Palyanov, 2013, Mantle–slab interaction and redox mechanism of diamond formation, Proc. Nat. Acad. Sci., 110, 20408, 10.1073/pnas.1313340110 Pal'yanov, 1999, Diamond formation from mantle carbonate fluids, Nature, 400, 417, 10.1038/22678 Qu, 2020, Research progress on high temperature corrosion mechanism of waste incineration power generation boiler, 012008 Rashchenko, 2018, Na4Ca(CO3)3: a novel carbonate analog of borate optical materials, CrystEngComm, 20, 5228, 10.1039/C8CE00745D Rashchenko, 2021, High-pressure synthesis and crystal structure of non-centrosymmetric K2Ca3(CO3)4, CrystEngComm, 23, 6675, 10.1039/D1CE00882J Rohrbach, 2007, Metal saturation in the upper mantle, Nature, 449, 456, 10.1038/nature06183 Rohrbach, 2011, Redox freezing and melting in the Earth's deep mantle resulting from carbon-iron redox coupling, Nature, 472, 209, 10.1038/nature09899 Safonov, 2011, 1276 Sagatova, 2020, Calcium orthocarbonate, Ca2CO4-Pnma: A potential host for subducting carbon in the transition zone and lower mantle, Lithos, 370–371 Sagatova, 2021, Stability of Ca2CO4-Pnma against the main mantle minerals from ab initio computations, ACS Earth Space Chem., 5, 1709, 10.1021/acsearthspacechem.1c00065 Schellart, 2011, Influence of lateral slab edge distance on plate velocity, trench velocity, and subduction partitioning. J. Geophys. Res.: Solid, Earth, 116 Schrauder, 1994, Hydrous and carbonatitic mantle fluids in fibrous diamonds from Jwaneng, Botswana. Geochim. Cosmochim. Acta, 58, 761, 10.1016/0016-7037(94)90504-5 Sharygin, 2018, Interaction of peridotite with Ca-rich carbonatite melt at 3.1 and 6.5 GPa: Implication for merwinite formation in upper mantle, and for the metasomatic origin of sublithospheric diamonds with Ca-rich suite of inclusions, Contrib. Mineral. Petrol., 173, 22, 10.1007/s00410-017-1432-3 Sharygin, 2021, Confocal Raman spectroscopic study of melt inclusions in olivine of mantle xenoliths from the Bultfontein kimberlite pipe (Kimberley cluster, South Africa): Evidence for alkali-rich carbonate melt in the mantle beneath Kaapvaal Craton, J. Raman Spectrosc. Sharygin, 2015, Melting phase relations of the Udachnaya-East group-I kimberlite at 3.0-6.5 GPa: experimental evidence for alkali-carbonatite composition of primary kimberlite melts and implications for mantle plumes, Gondwana Res., 28, 1391, 10.1016/j.gr.2014.10.005 Shatskii, 2002, Phase formation and diamond crystallization in carbon-bearing ultrapotassic carbonate-silicate systems, Russ. Geol. Geophys., 43, 940 Shatskiy, 2010, Performance of semi-sintered ceramics as pressure-transmitting media up to 30 GPa, High Pressure Res., 30, 443, 10.1080/08957959.2010.515079 Shatskiy, 2013, The system K2CO3-MgCO3 at 6 GPa and 900–1450 °C, Am. Mineral., 98, 1593, 10.2138/am.2013.4407 Shatskiy, 2013, New experimental data on phase relations for the system Na2CO3–CaCO3 at 6 GPa and 900–1400 °C, Am. Mineral., 98, 2164, 10.2138/am.2013.4436 Shatskiy, 2022, Towards composition of carbonatite melts in peridotitic mantle, Earth Planet. Sci. Lett., 581, 10.1016/j.epsl.2022.117395 Shatskiy, 2022, Solidus of carbonated phlogopite eclogite at 3–6 GPa: Implications for mantle metasomatism and ultra-high pressure metamorphism, Gondwana Res., 103, 188, 10.1016/j.gr.2021.10.016 Shatskiy, 2014, Phase relations in the system FeCO3-CaCO3 at 6 GPa and 900–1700 °C and its relation to the system CaCO3-FeCO3-MgCO3, Am. Mineral., 99, 773, 10.2138/am.2014.4721 Shatskiy, 2015, Phase relationships in the system K2CO3-CaCO3 at 6 GPa and 900–1450 °C, Am. Mineral., 100, 223, 10.2138/am-2015-5001 Shatskiy, 2015, Na-Ca carbonates synthesized under upper-mantle conditions: Raman spectroscopic and X-ray diffraction studies, Eur. J. Mineral., 27, 175, 10.1127/ejm/2015/0027-2426 Shatskiy, 2013, Silicate diffusion in alkali-carbonatite and hydrous melts at 16.5 and 24 GPa: Implication for the melt transport by dissolution–precipitation in the transition zone and uppermost lower mantle, Physics of the Earth and Planetary Interiors, 225, 1, 10.1016/j.pepi.2013.09.004 Shatskiy, 2017, Composition of primary kimberlite melt in a garnet lherzolite mantle source: constraints from melting phase relations in anhydrous Udachnaya-East kimberlite with variable CO2 content at 6.5 GPa, Gondwana Res., 45, 208, 10.1016/j.gr.2017.02.009 Shatskiy, 2022, Genetic link between saline and carbonatitic mantle fluids: The system NaCl-CaCO3-MgCO3 ± H2O ± Fe0 at 6 GPa, Geosci. Front., 13, 101431, 10.1016/j.gsf.2022.101431 Shatskiy, 2018, Revision of the CaCO3–MgCO3 phase diagram at 3 and 6 GPa, Am. Mineral., 103, 441, 10.2138/am-2018-6277 Shatskiy, 2022, Slab-derived melts interacting with peridotite: Toward the origin of diamond-forming melts, Lithos, 412-413, 106615, 10.1016/j.lithos.2022.106615 Shatskiy, 2020, Metasomatic interaction of the eutectic Na-and K-bearing carbonate melts with natural garnet lherzolite at 6 GPa and 1100–1200 °C: Toward carbonatite melt composition in SCLM, Lithos, 374–375 Shatskiy, 2020, Carbonate melt interaction with natural eclogite at 6 GPa and 1100–1200 °C: Implications for metasomatic melt composition in subcontinental lithospheric mantle, Chem. Geol., 558, 119915, 10.1016/j.chemgeo.2020.119915 Shatsky, 2008, Evidence for multistage evolution in a xenolith of diamond-bearing eclogite from the Udachnaya kimberlite pipe, Lithos, 105, 289, 10.1016/j.lithos.2008.04.008 Smith, 2016, Large gem diamonds from metallic liquid in Earth’s deep mantle, Science, 354, 1403, 10.1126/science.aal1303 Sobolev, 1997, Mineral inclusions in diamonds from the Sputnik kimberlite pipe, Yakutia, Lithos, 39, 135, 10.1016/S0024-4937(96)00022-9 Stachel, 1998, Rare and unusual mineral inclusions in diamonds from Mwadui, Tanzania. Contrib. Mineral. Petrol., 132, 34, 10.1007/s004100050403 Stachel, 2000, Kankan diamonds (Guinea) II: lower mantle inclusion parageneses, Contrib. Mineral. Petrol., 140, 16, 10.1007/s004100000174 Stagno, 2018, Experimental determination of the viscosity of Na2CO3 melt between 1.7 and 4.6 GPa at 1200–1700° C: Implications for the rheology of carbonatite magmas in the Earth's upper mantle, Chem. Geol., 501, 19, 10.1016/j.chemgeo.2018.09.036 Staudigel, 2014, Chemical fluxes from hydrothermal alteration of the oceanic crust, 583 Strong, 1959, The experimental fusion curve of iron to 96,000 atmospheres, J. Geophys. Res., 64, 653, 10.1029/JZ064i006p00653 Strong, 1971, Further studies on diamond growth rates and physical properties of laboratory-made diamond, J. Phys. Chem., 75, 1838, 10.1021/j100681a014 Thomson, 2016, Slab melting as a barrier to deep carbon subduction, Nature, 529, 76, 10.1038/nature16174 Tschauner, 2021, Discovery of davemaoite, CaSiO3-perovskite, as a mineral from the lower mantle, Science, 374, 891, 10.1126/science.abl8568 Wang, 1996, Magnesite-bearing inclusion assemblage in natural diamond, Earth Planet. Sci. Lett., 141, 293, 10.1016/0012-821X(96)00053-2 Woodland, 2020, Breyite inclusions in diamond: experimental evidence for possible dual origin, Eur. J. Mineral., 32, 171, 10.5194/ejm-32-171-2020 Wu, 1993, Critical evaluation and optimization of the thermodynamic properties and phase diagrams of the CaO–FeO, CaO–MgO, CaO–MnO, FeO–MgO, FeO–MnO, and MgO–MnO systems, J. Am. Ceram. Soc., 76, 2065, 10.1111/j.1151-2916.1993.tb08334.x Wyllie, 1975, Inflence of mantle CO2 ingeneration of carbonatites and kimberlites, Nature, 257, 297, 10.1038/257297a0 Yaxley, 1993 Yaxley, 2004, Phase relations of carbonate-bearing eclogite assemblages from 2.5 to 5.5 GPa: implications for petrogenesis of carbonatites, Contrib. Mineral. Petrol., 146, 606, 10.1007/s00410-003-0517-3 Yaxley, 1994, The refractory nature of carbonate during partial melting of eclogite: evidence from high pressure experiments and natural carbonate-bearing eclogites, Min Mag A, 58, 996, 10.1180/minmag.1994.58A.2.253 Yaxley, 1996, Experimental reconstruction of sodic dolomitic carbonatite melts from metasomatised lithosphere, Contrib. Mineral. Petrol., 124, 359, 10.1007/s004100050196 Yaxley, 1998, Carbonatite metasomatism in the southeastern Australian lithosphere, J. Petrol., 39, 1917, 10.1093/petroj/39.11-12.1917 Young, 2019, Global kinematics of tectonic plates and subduction zones since the late Paleozoic Era, Geosci. Front., 10, 989, 10.1016/j.gsf.2018.05.011 Zedgenizov, 2014, Local variations of carbon isotope composition in diamonds from Sao-Luis (Brazil): evidence for heterogenous carbon reservoir in sublithospheric mantle, Chem. Geol., 363, 114, 10.1016/j.chemgeo.2013.10.033 Zedgenizov, 2009, Mg and Fe-rich carbonate-silicate high-density fluids in cuboid diamonds from the Internationalnaya kimberlite pipe (Yakutia), Lithos, 112, 638, 10.1016/j.lithos.2009.05.008 Zedgenizov, 2014, Merwinite in diamond from São Luis, Brazil: A new mineral of the Ca-rich mantle environment, Am. Mineral., 99, 547, 10.2138/am.2014.4767 Zedgenizov, 2018, Diamond formation during metasomatism of mantle eclogite by chloride-carbonate melt, Contrib. Mineral. Petrol., 173, 84, 10.1007/s00410-018-1513-y Zhai, 2021, Redox-induced destabilization of dolomite at Earth’s mantle transition zone, J. Earth Sci., 32, 880, 10.1007/s12583-021-1410-6