Phát hiện sự thay đổi nhiệt độ bề mặt đất (LST) và một số tham số liên quan bằng cách sử dụng ảnh Landsat: Nghiên cứu trường hợp lưu vực hồ Ebinur, Tân Cương, Trung Quốc

Wetlands - Tập 38 - Trang 65-80 - 2017
Fei Zhang1,2,3, Hsiangte Kung4, Verner Carl Johnson5, Bethany Iris LaGrone4, Juan Wang1,2
1Resources and Environment Department, Xinjiang University, Urumqi, People’s Republic of China
2Key Laboratory of Oasis Ecology, Ministry of Education, Xinjiang University, Urumqi, People’s Republic of China
3Key Laboratory of Xinjiang Wisdom City and Environment Modeling, Urumqi, People’s Republic of China
4Department of Earth Sciences, The University of Memphis, Memphis, USA
5Department of Physical and Environmental Sciences, Colorado Mesa University, Grand Junction, USA

Tóm tắt

Nghiên cứu này đánh giá và phát hiện sự thay đổi về sử dụng/che phủ đất (LUC) và nhiệt độ bề mặt đất (LST) sử dụng dữ liệu vệ tinh Landsat TM đa thời gian. NDVI, độ phản xạ (albedo) và MNDWI đã được sử dụng để phân tích LST một cách định tính. Kết quả cho thấy độ chính xác của các phép đo LST trong lưu vực đạt mức trong khoảng 1,5 °C. Tiếp theo, những thay đổi về nhiệt độ giữa các năm 1998 và 2011 đã được phân tích. Phân loại nhiệt độ bề mặt đất nằm trong năm loại như sau: thấp hơn (1,9–8,9 °C), thấp (8,9–15,9 °C), trung bình (15,9–22,9 °C), cao (22,9–29,9 °C), cao hơn (29,9–36,9 °C) và cao nhất (36,9–43,9 °C). Thứ hai, các mặt cắt theo chiều đông-tây của các đặc điểm phân bố các loại LUC đã được thực hiện dựa trên hình ảnh năm 1998 và 2011. Bằng cách so sánh LST trong hai năm này, có thể kết luận rằng rừng-nhà cỏ có ảnh hưởng rất mạnh đến nhiệt độ. Thứ ba, LST tăng lên cùng với sự gia tăng mật độ của các vùng đất bị mặn hóa và sa mạc hóa, nhưng giảm xuống với sự gia tăng độ che phủ thực vật. Mối quan hệ giữa MNDWI và LST có tương quan tiêu cực đáng kể. Các phân tích hồi quy bội giữa LST và từng chỉ số cũng như độ cao đã được thực hiện để đánh giá môi trường nhiệt của lưu vực. Hồi quy này cho thấy NDVI, độ phản xạ (albedo), MNDWI và một mô hình độ cao số là những chỉ số hiệu quả để định lượng ảnh hưởng của sự thay đổi sử dụng/che phủ đất (LUCC) đến LST, và hệ số tương quan R là 0,806. Cuối cùng, các yếu tố tự nhiên và con người là những yếu tố quan trọng ảnh hưởng đến sự thay đổi nhiệt độ. Nói chung, nhiệt độ của ốc đảo thấp hơn so với các vùng xung quanh, dẫn đến hiện tượng ‘hiệu ứng đảo lạnh’.

Từ khóa

#Nhiệt độ bề mặt đất #Ra quyết định sử dụng đất #Nghiên cứu vệ tinh #Độ che phủ thực vật #Phân tích hồi quy đa biến.

Tài liệu tham khảo

Abuduwaili J, Gabchenko MV, Xu J (2008) Eolian transport of salts—a case study in the area of lake Ebinur (Xinjiang, Northwest China). Journal of Arid Environments 72(10):1843–1852 Abuduwailil J, Zhang Z, Jiang F (2015) Evaluation of the pollution and human health risks posed by heavy metals in the atmospheric dust in ebinur basin in northwest china. Environmental Science and Pollution Research 22(18):14018–14031 Ahmed B, Kamruzzaman M, Zhu X, Rahman MS, Choi K (2013) Simulating land cover changes and their impacts on land surface temperature in Dhaka. Remote Sensing 5:5969–5998 Bai J, Liu SM, Hu G (2008) Inversion and verification of land surface temperature with remote sensing TM/ETM+ data. Transactions of the Chinese Society of. Agricultural Engineering 24(9):148–154 Carlson TN, Ripley DA (1997) On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sensing of Environment 62:241–252 Chakraborty SB, Kant Y, Mitra D (2015) Assessment of land surface temperature and heat fluxes over Delhi using remote sensing data. Journal of Environmental Management 148:143–152 Chander G, Markham B (2005) Revised Landsat 5 TM radiometric calibration procedures and post-calibration dynamic ranges. USGS, USA Chen X, Zhao H, Li P et al (2006) Remote sensing image-based analysis of the relationship between urban heat island and land use / cover changes. Remote Sensing of Environment 104:133–146 Dash P, Gottsche FM, Olesen FS, Fischer H (2002) Land surface temperature and emissivity estimation from passive sensor data: theory and practice–current trends. International Journal of Remote Sensing 23:2563–2594 Davranche A, Lefebvre G, Poulin B (2010) Wetland monitoring using classification trees and SPOT-5 seasonal time series. Remote Sensing of Environment 114:552–562 Dissanayake S, Asafu AJ, Mahadeva R (2017) Addressing climate change cause and effect on land cover and land use in South Asia. Land Use Policy 67:352–366 Dong J, Peters LC (2010) On the relationship between temperature and MODIS snow cover retrieval errors in the western U.S. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing 3(1):132–140 Duan Z, Bastiaanssen WGM (2013) Estimating water volume variations in lakes and reservoirs from four operational satellite altimetry databases and satellite imagery data. Remote Sensing of Environment 134:403–416 Effat HA, Hassan OAK (2014) Change detection of urban heat islands and some related parameters using multi-temporal Landsat images: a case study for Cairo city, Egypt. Urban Climate 10:171–188 Fan PY, Ding F, Zhang X (2013) A comparison study of two algorithms for spatial downscaling of land surface temperature retrieved from Landsat data. Journal of Subtropical Resources and Environment 3(2):20–28 Gao XJ, Zhang DF, Chen ZX et al (2007) Land use effects on climate in China as simulated by a regional climate model. Science in China Series D: Earth Sciences 50(4):620–628 Ge LM, He Q, Leng ZX et al (2007) Analysis on characteristics of climate change in Aibi Lake area in Xinjiang in recent 40 years. Journal of Arid Land Resources and Environment 1:54–58 (in Chinese) Gillespie A, Rokugawa S, Matsunaga T et al (1998) A temperature and emissivity separation algorithm for advanced spaceborne thermal emission and reflection radiometer (ASTER) images. Geoscience & Remote Sensing IEEE Transactions on 36(4):1113–1126 Mountain Research Initiative EDW Working Group (2015). Elevation-dependent warming in mountain regions of the world. Nature Climate Change 5(5):424–430. https://doi.org/10.1038/nclimate2563 Hasler N, Werth D, Avissar R (2009) Effects of tropical deforestation on global hydroclimate: a multi-model ensemble analysis. Journal of Climate 22:1124–1141 Hua WJ, Chen HS (2013) Impacts of regional-scale land use/land cover change on diurnal temperature range. Advances in Climate Change Research 4(3):166–172 Ii BLT (2016) Land system architecture for urban sustainability: new directions for land system science illustrated by application to the urban heat island problem. Land Use Science 11(6):689–697 Intergovernmental Panel on Climate Change, (IPCC) (2015) Climate change 2014: mitigation of climate change. Cambridge University Press, Cambridge IPCC. 2007. Climate Change (2007). The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Solomon, S. et al. Eds., Cambridge University Press, Cambridge, 996 Jimenez-Munoz JC, Sobrino JA (2003) A generalized single-channel method for retrieving land surface temperature from remote sensing data. Journal of Geophysical Research 108(D22):4688–4695 Jing WL, Yang YP, Yue XF, Zhao XD (2016) A comparison of different regression algorithms for downscaling monthly satellite-based precipitation over north china. Remote Sensing 8(10):835–852 Landsat Project Science Office (2002) Landsat 7 science data User’s handbook. Goddard Space Flight Center, Greenbelt Lawrimore JH, Menne MJ, Gleason BE, Williams CN, Wuertz DB, Vose RS, Rennie J. (2011). An overview of the global historical climatology network monthly mean temperature data set, version 3. Journal of Geophysical Research – Atmospheres 116, D19121 Li RP, Zhang JP (2010) Study on the remote sensing of surface albedo in the Horqin sand land. Meteorological and Environmental Research 1(3):21–24 28 Li JQ, Zhang QG, Zhu YL (2012) Land surface temperature retrieval and dynamic change of the thermal landscape patterns of Hefei city. Journal of Anhui Agricultural University 39(4):629–639 (in Chinese) Li X, Ding JL, Wang G (2013) Study on the response of surface thermal environment to land use pattern changes in typical oasis of Turkmenistan. Research of Soil and Water Conservation 39(4):199–202 (in Chinese) Liang SL (2000) Narrowband to broadband conversion of land surface albedo. Algorithms. Remote Sensing of Environment 76:213–238 Liu H, Weng Q (2008) Seasonal variations in the relationship between landscape pattern and land surface temperature in Indianapolis, USA. Environmental Monitoring and Assessment 144(1–3):199–219 Liu YH, Fang XY, YM X et al (2017) Assessment of surface urban heat island across China’s three main urban agglomerations. Theoretical and Applied Climatology. https://doi.org/10.1007/s00704-017-2197-3 Luo JH, Zhang JC, Huang WJ (2010) The analysis of consistency between HJ-1B and Landsat 5 TM for retrieving LST based on the Single-Channel algorithm. Spectroscopy and Spectral Analysis 30(12):3285–3289 (in Chinese) Peng W, Zhou J, Wen L et al (2017) Land surface temperature and its impact factors in western Sichuan plateau, China. Geocarto Internationa 32(8):919–934 Pielke S (2005) Land use and climate change. Science 310:1625–1626 Purevdorj TS, Tateishi R, Ishiyama T et al (1998) Relationships between percent vegetation cover and vegetation indices. International Journal of Remote Sensing 19(18):3519–3535 Qin Z, Karnieli A, Berliner P (2001) A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel–Egypt border region. International Journal of Remote Sensing 22(18):3719–3746 Rouse JW, Haas RH, Schell JA (1974) Monitoring the vernal advancement of retrogradation of natural vegetation. NASA/GSFC, typeIII, final report, Greenbelt Sobrino JA, Li ZL, Stoll MP et al (1996) Multi-channel and multi-angle algorithms for estimating sea and land surface temperature with ATSR data. International Journal of Remote Sensing 17(11):2089–2114 Sobrino JA, Jiménez-Muñoz JC, Paolini L (2004) Land surface temperature retrieval from LANDSAT TM5. Remote Sensing of Environment 90:434–440 Exelis Visual Information Solutions. (2010). ENVI v.4.8. Boulder: EXELIS Sun YL, Guo P, Gao XY (2012a) Study on temporal and spatial variation of land surface temperature based on Landsat TM/ETM+ in Tianjin. Journal of Tianjin Normal Universty (Natural Science Edition) 32(1):48–53 Sun QQ, ZF W, Tan JJ (2012b) The relationship between land surface temperature and land use/land cover in Guangzhou, China. Environment and Earth Science 65:1687–1694 Tebbs EJ, Remedios JJ, Avery ST et al (2013) Remote sensing the hydrological variability of Tanzania’s lake Natron, a vital lesser flamingo breeding site under threat. Ecohydrology and Hydrobiology 13:148–158 Vermeulen SJ, Campbell BM, Ingram JSI (2012) Climate change and food systems. Annual Review of Environment and Resources 37:195–222 Walawender JP, Szymanowski M, Hajto MJ, Bokwa A (2014) Land surface temperature patterns in the urban agglomeration of Krakow (Poland) derived from Landsat-7/ETM+ data. Pure and Applied Geophysics 171(6):913–940 Wang M, Meng H, Bai Y (2013) Relationships between landscapes spatial pattern and surface temperature in shanghai. Ecology and Environmental Sciences 25(2):343–350 (in Chinese) Wang L, Li ZQ, Wang FT, Edwards R (2014) Glacier shrinkage in the Ebinur lake basin, Tien Shan, China, during the past 40 years. Journal of Glaciology 220(60):245–254 Weng Q, Lu D, Schubring J (2004) Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies. Remote Sensing of Environment 89(4):467–483 Xie YL, Fan XW, Han T (2011) Surface temperature inversion and the urban heat island effect of Lanzhou based on TM. Journal of Subtropical Resources and Environment 25(9):172–175 (in Chinese) Xiong Y, Huang S, Chen F, Ye H, Wang C, Zhu C (2012) Te impacts of rapid urbanization on the thermal environment: a remote sensing study of Guangzhou, South China. Remote Sensing 4:2033–2056 Xu HQ (2005) A study on information extraction of water body with the modified normalized difference water index (MNDWI). Journal of Remote Sensing 9(5):589–595 (in Chinese) Xu HQ (2006) Modification of normalized difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing 27:3025–3033 Yue LW, Shen HF, Zhang LP et al (2017) High-quality seamless DEM generation blending SRTM-1, ASTER GDEM v2 and ICESat/GLAS observations. ISPRS Journal of Photogrammetry and Remote Sensing 123:20–34 Zhang Z, He G (2013) Generation of Landsat surface temperature product for China, 2000–2010. International Journal of Remote Sensing 34:7369–7375 Zhang F, Tiyip T, Ding JL (2013) The heat environment of land surface of typical oasis in upper reaches of Tarim river with remote sensing images. Journal of Arid Land Resources and Environment 27(4):111–116 (in Chinese) Zhang F, Tiyip T, Johnson VC et al (2015) The influence of natural and human factors in the shrinking of the Ebinur Lake, Xinjiang, China, during the 1972–2013 period. Environmental Monitoring and Assessment 187:1–14 Zhang F, Tiyip T, Kung HT et al (2016) Improved water extraction using Landsat TM/ETM+ images in Ebinur Lake, Xinjiang, China. Remote Sensing Applications Society. Environment 4:109–118 Zhang F, Kung HT, Verner CJ (2017) Assessment of land-cover/land-use change and landscape patterns in the two National Nature Reserves of Ebinur Lake watershed, Xinjiang, China. Sustainability 9:724–746 Zhao SH, Qin QM, Zhang F (2011) Research on using a mono-window algorithm for land surface temperature retrieval from Chinese satellite for environment and natural disaster monitoring (HJ-1B) data. Spectroscopy and Spectral Analysis 31(6):1552–1155 (in Chinese) Zhu HS, Liu XM, Pei H (2007) Summary on retrieval of land surface temperature using thermal infrared remote sensing. Arid Meteorology 25(2):17–21 (in Chinese)