Challenges, taxonomy and techniques of iris localization: A survey

Digital Signal Processing - Tập 107 - Trang 102852 - 2020
Gunjan Gautam1, Susanta Mukhopadhyay1
1Department of Computer Science and Engineering, Indian Institute of Technology (ISM), Dhanbad 826004, India

Tài liệu tham khảo

Jain, 2004, An introduction to biometric recognition, IEEE Trans. Circuits Syst. Video Technol., 14, 4, 10.1109/TCSVT.2003.818349 Newman Daugman, 1993, High confidence visual recognition of persons by a test of statistical independence, IEEE Trans. Pattern Anal. Mach. Intell., 15, 1148, 10.1109/34.244676 Rodríguez, 2005, A new method for iris pupil contour delimitation and its application in iris texture parameter estimation, 631 Hofbauer, 2014, A ground truth for iris segmentation, 527 Hofbauer, 2016, Experimental analysis regarding the influence of iris segmentation on the recognition rate, IET Biometrics, 5, 200, 10.1049/iet-bmt.2015.0069 Bowyer, 2008, Image understanding for iris biometrics: a survey, Comput. Vis. Image Underst., 110, 281, 10.1016/j.cviu.2007.08.005 Bowyer, 2016, A survey of iris biometrics research: 2008–2010, 23 Bowyer, 2016, Introduction to the handbook of iris recognition, 1 De Marsico, 2016, Iris recognition through machine learning techniques: a survey, Pattern Recognit. Lett., 82, 106, 10.1016/j.patrec.2016.02.001 Proença, 2006, Iris segmentation methodology for non-cooperative recognition, IEE Proc., Vis. Image Signal Process., 153, 199, 10.1049/ip-vis:20050213 Bowyer, 2013, A survey of iris biometrics research: 2008–2010, 15 Manchanda, 2013, A survey: various segmentation approaches to iris recognition, Int. J. Inf. Comput. Technol., 3, 419 Alvarez-Betancourt, 2010, A fast iris location based on aggregating gradient approximation using qma-owa operator, 1 Daugman, 2004, How iris recognition works, IEEE Trans. Circuits Syst. Video Technol., 14, 21, 10.1109/TCSVT.2003.818350 Daugman, 2006, Probing the uniqueness and randomness of iriscodes: results from 200 billion iris pair comparisons, Proc. IEEE, 94, 1927, 10.1109/JPROC.2006.884092 Daugman, 2001, Iris recognition, Am. Sci., 89, 326, 10.1511/2001.28.737 Kong, 2010, An analysis of iriscode, IEEE Trans. Image Process., 19, 522, 10.1109/TIP.2009.2033427 Daugman, 2016, Information theory and the iriscode, IEEE Trans. Inf. Forensics Secur., 11, 400, 10.1109/TIFS.2015.2500196 Tisse, 2008, Iris recognition system for person identification, 71 Huang, 2002, An efficient iris recognition system, 450 Jan, 2014, A dynamic non-circular iris localization technique for non-ideal data, Comput. Electr. Eng., 40, 215, 10.1016/j.compeleceng.2014.05.004 Tan, 2010, Efficient and robust segmentation of noisy iris images for non-cooperative iris recognition, Image Vis. Comput., 28, 223, 10.1016/j.imavis.2009.05.008 Qiaoli, 2016, Research on iris localization algorithms, 353 Radman, 2012, Iris segmentation in visible wavelength environment, Proc. Eng., 41, 743, 10.1016/j.proeng.2012.07.238 Zhang, 2002, Invariant texture segmentation via circular Gabor filters, 901 Radman, 2013, Fast and reliable iris segmentation algorithm, IET Image Process., 7, 42, 10.1049/iet-ipr.2012.0452 Li, 2013, A fast and accurate iris localization method based on gray level statistics and region properties, 855 Kumar, 2015, Iris localization based on integro-differential operator for unconstrained infrared iris images, 277 Kumar, 2015, An iris localization method for noisy infrared iris images, 208 Soliman, 2017, Efficient iris localization and recognition, Optik, Int. J. Light Electron Opt., 140, 469, 10.1016/j.ijleo.2016.11.150 Jan, 2014, A dynamic non-circular iris localization technique for non-ideal data, Comput. Electr. Eng., 40, 215, 10.1016/j.compeleceng.2014.05.004 Wildes, 1994, A system for automated iris recognition, 121 R.P. Wildes, J.C. Asmuth, K.J. Hanna, S.C. Hsu, R.J. Kolczynski, J.R. Matey, S.E. McBride, Automated, non-invasive iris recognition system and method, US Patent 5,572,596, Nov. 5, 1996. Wildes, 1997, Iris recognition: an emerging biometric technology, Proc. IEEE, 85, 1348, 10.1109/5.628669 Masek, 2003 Ma, 2002, Iris recognition using circular symmetric filters, 414 Lim, 2001, Efficient iris recognition through improvement of feature vector and classifier, ETRI J., 23, 61, 10.4218/etrij.01.0101.0203 Ma, 2004, Efficient iris recognition by characterizing key local variations, IEEE Trans. Image Process., 13, 739, 10.1109/TIP.2004.827237 Huang, 2004, Iris model based on local orientation description, 954 Yuan, 2005, Iris feature extraction using 2d phase congruency, 437 Chin, 2006, High security iris verification system based on random secret integration, Comput. Vis. Image Underst., 102, 169, 10.1016/j.cviu.2006.01.002 Rai, 2014, Iris recognition using combined support vector machine and hamming distance approach, Expert Syst. Appl., 41, 588, 10.1016/j.eswa.2013.07.083 Monro, 2007, Dct-based iris recognition, IEEE Trans. Pattern Anal. Mach. Intell., 29, 586, 10.1109/TPAMI.2007.1002 Viju, 2011, A novel approach to iris recognition for personal authentication, 350 Santoso, 2016, Improving iris image segmentation in unconstrained environments using nmf-based approach, 1 Van Nguyen, 2008, A novel circle detection method for iris segmentation Huang, 2004, A new iris segmentation method for recognition, 554 Field, 1987, Relations between the statistics of natural images and the response properties of cortical cells, JOSA A, 4, 2379, 10.1364/JOSAA.4.002379 Proenca, 2010, The ubiris. v2: a database of visible wavelength iris images captured on-the-move and at-a-distance, IEEE Trans. Pattern Anal. Mach. Intell., 32, 1529, 10.1109/TPAMI.2009.66 Vatsa, 2005, Reducing the false rejection rate of iris recognition using textural and topological features, Int. J. Signal Process., 2 Fairhurst, 2011, Analysis of physical ageing effects in iris biometrics, IET Comput. Vis., 5, 358, 10.1049/iet-cvi.2010.0165 I.U. Nkole, G.B. Sulong, S. Saparudin, An enhanced iris segmentation algorithm using circle hough transform, 2012. Jan, 2012, Iris localization in frontal eye images for less constrained iris recognition systems, Digit. Signal Process., 22, 971, 10.1016/j.dsp.2012.06.001 Mahlouji, 2012, Human iris segmentation for iris recognition in unconstrained environments, Int. J. Comput. Sci. Issues, 9, 149 Uhl, 2012, Weighted adaptive hough and ellipsopolar transforms for real-time iris segmentation, 283 Cauchie, 2008, Optimization of an hough transform algorithm for the search of a center, Pattern Recognit., 41, 567, 10.1016/j.patcog.2007.07.001 Zali-Vargahan, 2012, Contourlet transform for iris image segmentation, Int. J. Comput. Appl., 60 Do, 2005, The contourlet transform: an efficient directional multiresolution image representation, IEEE Trans. Image Process., 14, 2091, 10.1109/TIP.2005.859376 Han, 2009, Iris recognition based on a novel normalization method and contourlet transform, 1 Zhai, 2010, A novel iris recognition method based on the contourlet transform and biomimetic pattern recognition algorithm, 1390 Azizi, 2009, A new method for iris recognition based on contourlet transform and non linear approximation coefficients, 307 Luo, 2012, Iris feature extraction and recognition based on wavelet-based contourlet transform, Proc. Eng., 29, 3578, 10.1016/j.proeng.2012.01.534 Set, 2007, Comments on the casia version 1.0 iris data set, IEEE Trans. Pattern Anal. Mach. Intell., 29, 1869, 10.1109/TPAMI.2007.1137 Jan, 2013, Reliable iris localization using hough transform, histogram-bisection, and eccentricity, Signal Process., 93, 230, 10.1016/j.sigpro.2012.07.033 Jan, 2013, Iris localization based on the hough transform, a radial-gradient operator, and the gray-level intensity, Optik, Int. J. Light Electron Opt., 124, 5976, 10.1016/j.ijleo.2013.04.116 Sahmoud, 2013, Efficient iris segmentation method in unconstrained environments, Pattern Recognit., 46, 3174, 10.1016/j.patcog.2013.06.004 Raffei, 2014, Fusing the line intensity profile and support vector machine for removing reflections in frontal rgb color eye images, Inf. Sci., 276, 104, 10.1016/j.ins.2014.02.049 Jan, 2014, Iris segmentation for visible wavelength and near infrared eye images, Optik, Int. J. Light Electron Opt., 125, 4274, 10.1016/j.ijleo.2014.04.009 Umer, 2015, Iris recognition using multiscale morphologic features, Pattern Recognit. Lett., 65, 67, 10.1016/j.patrec.2015.07.008 Raffei, 2015, A low lighting or contrast ratio visible iris recognition using iso-contrast limited adaptive histogram equalization, Knowl.-Based Syst., 74, 40, 10.1016/j.knosys.2014.11.002 Zhao, 2015, An accurate iris segmentation framework under relaxed imaging constraints using total variation model, 3828 Zhao Brainard, 1986, Analysis of the retinex theory of color vision, JOSA A, 3, 1651, 10.1364/JOSAA.3.001651 Haindl, 2015, Unsupervised detection of non-iris occlusions, Pattern Recognit. Lett., 57, 60, 10.1016/j.patrec.2015.02.012 Kass, 1988, Snakes: active contour models, Int. J. Comput. Vis., 1, 321, 10.1007/BF00133570 Xu, 1998, Snakes, shapes, and gradient vector flow, IEEE Trans. Image Process., 7, 359, 10.1109/83.661186 Caselles, 1993, A geometric model for active contours in image processing, Numer. Math., 66, 1, 10.1007/BF01385685 Malladi, 1995, Shape modeling with front propagation: a level set approach, IEEE Trans. Pattern Anal. Mach. Intell., 17, 158, 10.1109/34.368173 Kimia, 1995, Shapes, shocks, and deformations I: the components of two-dimensional shape and the reaction-diffusion space, Int. J. Comput. Vis., 15, 189, 10.1007/BF01451741 Osher, 2003, Implicit functions, 3 Sethian, 2003, Level set methods and fast marching methods, J. Comput. Inf. Technol., 11, 1 Zhao, 1996, A variational level set approach to multiphase motion, J. Comput. Phys., 127, 179, 10.1006/jcph.1996.0167 Chan, 2001, Active contours without edges, IEEE Trans. Image Process., 10, 266, 10.1109/83.902291 Vemuri, 2003, Joint image registration and segmentation, 251 Li, 2005, Level set evolution without re-initialization: a new variational formulation, 430 Ritter, 2003, Locating the iris: a first step to registration and identification, Image, 1, 4 Ross, 2006, Segmenting non-ideal irises using geodesic active contours, 1 Shah, 2009, Iris segmentation using geodesic active contours, IEEE Trans. Inf. Forensics Secur., 4, 824, 10.1109/TIFS.2009.2033225 Zhijia, 2009, An iris location method based on the active contour, 537 Moosavi, 2010, A novel iris recognition system based on active contour, 1 Talebi, 2010, A novel iris segmentation method based on balloon active contour, 1 Cohen, 1993, Finite-element methods for active contour models and balloons for 2-d and 3-d images, IEEE Trans. Pattern Anal. Mach. Intell., 15, 1131, 10.1109/34.244675 Koh, 2010, A robust iris localization method using an active contour model and Hough transform, 2852 Boddeti, 2011, Improved iris segmentation based on local texture statistics, 2147 Chen, 2011, Iris segmentation for non-cooperative recognition systems, IET Image Process., 5, 448, 10.1049/iet-ipr.2009.0234 Roy, 2011, Iris segmentation using variational level set method, Opt. Lasers Eng., 49, 578, 10.1016/j.optlaseng.2010.09.011 Roy, 2011, Iris recognition using shape-guided approach and game theory, Pattern Anal. Appl., 14, 329, 10.1007/s10044-011-0229-7 Roy, 2011, Towards nonideal iris recognition based on level set method, genetic algorithms and adaptive asymmetrical svms, Eng. Appl. Artif. Intell., 24, 458, 10.1016/j.engappai.2010.06.014 Abdullah, 2014, Fast and accurate pupil isolation based on morphology and active contour, Int. J. Inf. Electron. Eng., 4, 418 Abdullah, 2016, Robust iris segmentation method based on a new active contour force with a noncircular normalization, IEEE Trans. Syst. Man Cybern. Syst., 47, 3128, 10.1109/TSMC.2016.2562500 Ouabida, 2016, Optical approach for iris segmentation and tracking, 476 Ouabida, 2017, Vander Lugt correlator based active contours for iris segmentation and tracking, Expert Syst. Appl., 71, 383, 10.1016/j.eswa.2016.12.001 Lugt, 1964, Signal detection by complex spatial filtering, IEEE Trans. Inf. Theory, 10, 139, 10.1109/TIT.1964.1053650 Mumford, 1989, Optimal approximations by piecewise smooth functions and associated variational problems, Commun. Pure Appl. Math., 42, 577, 10.1002/cpa.3160420503 Jamaludin, 2015, Fast and accurate iris localization based on improved Chan-Vese active contour model, 1 Jamaludin, 2015, Fast, accurate and memory efficient pupil localization based on pixels properties method, 1 Soille, 2013 Zhang, 2010, Texture removal for adaptive level set based iris segmentation, 1729 Shelton, 2014, Iris recognition using level set and hgefe, 1392 Zhang, 2014, A new approach for iris localization based on an improved level set method, 309 Daugman, 2007, New methods in iris recognition, IEEE Trans. Syst. Man Cybern. B, 37, 1167, 10.1109/TSMCB.2007.903540 Abhyankar, 2006, Active shape models for effective iris segmentation Cootes, 1995, Active shape models-their training and application, Comput. Vis. Image Underst., 61, 38, 10.1006/cviu.1995.1004 Proenca, 2010, Iris recognition: on the segmentation of degraded images acquired in the visible wavelength, IEEE Trans. Pattern Anal. Mach. Intell., 32, 1502, 10.1109/TPAMI.2009.140 Alvarez-Betancourt, 2016, A keypoints-based feature extraction method for iris recognition under variable image quality conditions, Knowl.-Based Syst., 92, 169, 10.1016/j.knosys.2015.10.024 Peláez, 2006, A majority model in group decision making using qma–owa operators, Int. J. Intell. Syst., 21, 193, 10.1002/int.20127 Xie, 2015, Holistically-nested edge detection, 1395 Girshick, 2014, Rich feature hierarchies for accurate object detection and semantic segmentation, 580 Long, 2015, Fully convolutional networks for semantic segmentation, 3431 Dong, 2014, Learning a deep convolutional network for image super-resolution, 184 Liu, 2016, Accurate iris segmentation in non-cooperative environments using fully convolutional networks, 1 Sinha, 2017, Iris segmentation using deep neural networks, 548 Badrinarayanan, 2017, Segnet: a deep convolutional encoder-decoder architecture for image segmentation, IEEE Trans. Pattern Anal. Mach. Intell., 39, 2481, 10.1109/TPAMI.2016.2644615 Arsalan, 2017, Deep learning-based iris segmentation for iris recognition in visible light environment, Symmetry, 9, 263, 10.3390/sym9110263 Lakra, 2018, Segdensenet: iris segmentation for pre-and-post cataract surgery, 3150 Bazrafkan, 2018, An end to end deep neural network for iris segmentation in unconstrained scenarios, Neural Netw., 106, 79, 10.1016/j.neunet.2018.06.011 Lozej, 2018, End-to-end iris segmentation using u-net, 1 Lian, 2018, Attention guided u-net for accurate iris segmentation, J. Vis. Commun. Image Represent., 56, 296, 10.1016/j.jvcir.2018.10.001 Wu, 2019, Study on iris segmentation algorithm based on dense u-net, IEEE Access, 7, 123959, 10.1109/ACCESS.2019.2938809 Zhang, 2019, A robust iris segmentation scheme based on improved u-net, IEEE Access, 7, 85082, 10.1109/ACCESS.2019.2924464 Ronneberger, 2015, U-net: convolutional networks for biomedical image segmentation, 234 Morley, 2017, Improving ransac-based segmentation through cnn encapsulation Fischler, 1987, Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography, 726 E. Jalilian, A. Uhl, R. Kwitt, Domain adaptation for cnn based iris segmentation, in: BIOSIG 2017. Sardar, 2018, Iris localization using rough entropy and csa: a soft computing approach, Appl. Soft Comput., 67, 61, 10.1016/j.asoc.2018.02.047 Pal, 2005, Granular computing, rough entropy and object extraction, Pattern Recognit. Lett., 26, 2509, 10.1016/j.patrec.2005.05.007 Arsalan, 2018, Irisdensenet: robust iris segmentation using densely connected fully convolutional networks in the images by visible light and near-infrared light camera sensors, Sensors, 18, 1501, 10.3390/s18051501 Jégou, 2017, The one hundred layers tiramisu: fully convolutional densenets for semantic segmentation, 11 Huang, 2017, Densely connected convolutional networks, 4700 Jalilian, 2019, Deep domain adaption for convolutional neural network (cnn) based iris segmentation: solutions and pitfalls, 1 Zhu, 2017, Unpaired image-to-image translation using cycle-consistent adversarial networks, 2223 Li, 2019, Efficient and accurate iris detection and segmentation based on multi-scale optimized mask r-cnn, 715 Liang, 2019, Multi-pyramid optimized mask r-cnn for iris detection and segmentation, 329 He, 2016, Deep residual learning for image recognition, 770 Jha, 2019, Pixisegnet: pixel-level iris segmentation network using convolutional encoder–decoder with stacked hourglass bottleneck, IET Biometrics, 9, 11, 10.1049/iet-bmt.2019.0025 Newell, 2016, Stacked hourglass networks for human pose estimation, 483 Bonney, 2004, Iris pattern extraction using bit planes and standard deviations, 582 Li, 2006, Modeling intra-class variation for nonideal iris recognition, 419 Horn, 1981, Determining optical flow, Artif. Intell., 17, 185, 10.1016/0004-3702(81)90024-2 Pan, 2008, Iris localization based on multi-resolution analysis, 1 Mallat, 1989, A theory for multiresolution signal decomposition: the wavelet representation, IEEE Trans. Pattern Anal. Mach. Intell., 11, 674, 10.1109/34.192463 Mallat, 1992, Characterization of signals from multiscale edges, IEEE Trans. Pattern Anal. Mach. Intell., 14, 710, 10.1109/34.142909 Jan, 2013, A non-circular iris localization algorithm using image projection function and gray level statistics, Optik, Int. J. Light Electron Opt., 124, 3187, 10.1016/j.ijleo.2012.09.018 Pundlik, 2010, Iris segmentation in non-ideal images using graph cuts, Image Vis. Comput., 28, 1671, 10.1016/j.imavis.2010.05.004 Benboudjema, 2013, Challenging eye segmentation using triplet Markov spatial models, 1927 Yahiaoui, 2014, Implementation of unsupervised statistical methods for low-quality iris segmentation, 566 Yahiaoui, 2016, Markov chains for unsupervised segmentation of degraded nir iris images for person recognition, Pattern Recognit. Lett., 82, 116, 10.1016/j.patrec.2016.05.025 Othman, 2016, Osiris: an open source iris recognition software, Pattern Recognit. Lett., 82, 124, 10.1016/j.patrec.2015.09.002 Forney, 1973, The Viterbi algorithm, Proc. IEEE, 61, 268, 10.1109/PROC.1973.9030 Sutra, 2012, The Viterbi algorithm at different resolutions for enhanced iris segmentation, 310 Tan, 2012, Unified framework for automated iris segmentation using distantly acquired face images, IEEE Trans. Image Process., 21, 4068, 10.1109/TIP.2012.2199125 Badejo, 2016, A robust preprocessing algorithm for iris segmentation from low contrast eye images, 567 Hu, 2015, Improving colour iris segmentation using a model selection technique, Pattern Recognit. Lett., 57, 24, 10.1016/j.patrec.2014.12.012 Gangwar, 2016, Irisseg: a fast and robust iris segmentation framework for non-ideal iris images, 1 Beucher, 1979, Use of watersheds in contour detection Frucci, 2016, Wire: watershed based iris recognition, Pattern Recognit., 52, 148, 10.1016/j.patcog.2015.08.017 Frucci, 2013, Watershed based iris segmentation, 204 Frucci, 2013, Using the watershed transform for iris detection, 269 He, 2009, Toward accurate and fast iris segmentation for iris biometrics, IEEE Trans. Pattern Anal. Mach. Intell., 31, 1670, 10.1109/TPAMI.2008.183 Cui, 2004, A fast and robust iris localization method based on texture segmentation, 401 Chen, 2009, Accurate and fast iris segmentation applied to portable image capture device, 80 Kong, 2001, Accurate iris segmentation based on novel reflection and eyelash detection model, 263 He, 2008, Enhanced usability of iris recognition via efficient user interface and iris image restoration, 261 Nguyen, 2010, Focus-score weighted super-resolution for uncooperative iris recognition at a distance and on the move, 1 Boddeti, 2008, Extended depth of field iris recognition with correlation filters, 1 Nguyen, 2011, Quality-driven super-resolution for less constrained iris recognition at a distance and on the move, IEEE Trans. Inf. Forensics Secur., 6, 1248, 10.1109/TIFS.2011.2159597 Nguyen, 2012, Feature-domain super-resolution framework for Gabor-based face and iris recognition, 2642 Proenca, 2011, Toward covert iris biometric recognition: experimental results from the nice contests, IEEE Trans. Inf. Forensics Secur., 7, 798, 10.1109/TIFS.2011.2177659 Jillela, 2013, Methods for iris segmentation, 239 Labati, 2012, Iris segmentation: state of the art and innovative methods, 151 Alonso-Fernandez, 2015, Reconstruction of smartphone images for low resolution iris recognition, 1 Tomeo-Reyes, 2015, A biomechanical approach to iris normalization, 9 Thornton, 2007, A Bayesian approach to deformed pattern matching of iris images, IEEE Trans. Pattern Anal. Mach. Intell., 29, 596, 10.1109/TPAMI.2007.1006 Hollingsworth, 2009, Pupil dilation degrades iris biometric performance, Comput. Vis. Image Underst., 113, 150, 10.1016/j.cviu.2008.08.001 Labati, 2010, Noisy iris segmentation with boundary regularization and reflections removal, Image Vis. Comput., 28, 270, 10.1016/j.imavis.2009.05.004 Jillela, 2013, Iris segmentation for challenging periocular images, 281 Tan, 2013, Towards online iris and periocular recognition under relaxed imaging constraints, IEEE Trans. Image Process., 22, 3751, 10.1109/TIP.2013.2260165 Asmuni, 2013, An improved multiscale retinex algorithm for motion-blurred iris images to minimize the intra-individual variations, Pattern Recognit. Lett., 34, 1071, 10.1016/j.patrec.2013.02.017 Zuo, 2009, On a methodology for robust segmentation of nonideal iris images, IEEE Trans. Syst. Man Cybern., Part B, Cybern., 40, 703 Scotti, 2009, Adaptive reflection detection and location in iris biometric images by using computational intelligence techniques, IEEE Trans. Instrum. Meas., 59, 1825, 10.1109/TIM.2009.2030866 Li, 2012, An automatic iris occlusion estimation method based on high-dimensional density estimation, IEEE Trans. Pattern Anal. Mach. Intell., 35, 784, 10.1109/TPAMI.2012.169 L.R. Kennell, R.N. Rakvic, R.P. Broussard, R.W. Ives, Segmentation of off-axis iris images, 2009. C. Barry, N. Ritter, Database of 120 greyscale eye images, Lions Eye Institute, Perth Western Australia. Ma, 2003, Personal identification based on iris texture analysis, IEEE Trans. Pattern Anal. Mach. Intell., 25, 1519, 10.1109/TPAMI.2003.1251145 Mortensen, 1992, Adaptive boundary detection using ‘live-wire’ two-dimensional dynamic programming, Comput. Cardiol., 635, 10.1109/CIC.1992.269378 Arsalan, 2019, Fred-net: fully residual encoder–decoder network for accurate iris segmentation, Expert Syst. Appl., 122, 217, 10.1016/j.eswa.2019.01.010