Những thách thức của vi khuẩn không nuôi cấy: góc nhìn môi trường
Tóm tắt
Công nghệ sinh học môi trường cung cấp nhiều kỹ thuật hứa hẹn cho việc phục hồi các môi trường bị ô nhiễm. Thế giới công nghiệp hiện đại đưa ra những thách thức mới cho các khoa học môi trường, yêu cầu sự phát triển liên tục và mở rộng kiến thức để có thể định hình các loại chất ô nhiễm mới cũng như hiểu rõ hơn về các chiến lược phục hồi sinh học và các yếu tố hạn chế của chúng. Sự thành công của phục hồi sinh học phụ thuộc nhiều vào khả năng sống sót và hoạt động của các cộng đồng vi sinh vật bản địa và sự tương tác của chúng với các vi sinh vật được đưa vào. Phần lớn các vi sinh vật tự nhiên vẫn chưa được nuôi cấy; do đó, cần có thêm các nghiên cứu tập trung vào các chức năng nội tại của chúng trong hệ sinh thái. Trong bài tổng quan này, chúng tôi nhằm mục tiêu cung cấp (a) một cái nhìn tổng quát về sự hiện diện của các vi khuẩn sống nhưng không nuôi cấy và các tế bào chưa được nuôi cấy trong tự nhiên cũng như các chiến lược đánh thức đa dạng của chúng nhằm đáp ứng với, bên cạnh nhiều yếu tố khác, các chất chuyển hóa ngoại bào tín hiệu (tín hiệu tự động, các yếu tố thúc đẩy hồi sinh, và siderophores); (b) một cái nhìn khái quát về xu hướng trong việc phân lập các vi khuẩn không nuôi cấy; và (c) các ứng dụng tiềm năng của những tác nhân ẩn mình này trong các quá trình phục hồi.
Từ khóa
Tài liệu tham khảo
Alvarez PJJ, Illman WA, (Walter A, Wiley InterScience (Online service) (2006) Bioremediation and natural attenuation: process fundamentals and mathematical models. Wiley, Chichester
Austin B (2017) The value of cultures to modern microbiology. Antonie van Leeuwenhoek Int J Gen Mol Microbiol. https://doi.org/10.1007/s10482-017-0840-8
Ayrapetyan M, Oliver JD (2016) The viable but non-culturable state and its relevance in food safety. Curr Opin Food Sci 8:127–133. https://doi.org/10.1016/j.cofs.2016.04.010
Ayrapetyan M, Williams TC, Oliver JD (2014) Interspecific quorum sensing mediates the resuscitation of viable but nonculturable vibrios. Appl Environ Microbiol 80:2478–2483. https://doi.org/10.1128/AEM.00080-14
Bari SMN, Roky MK, Mohiuddin M et al (2013) Quorum-sensing autoinducers resuscitate dormant Vibrio cholerae in environmental water samples. Proc Natl Acad Sci USA 110:9926–9931. https://doi.org/10.1073/pnas.1307697110
Bassler BL, Greenberg EP, Stevens AM (1997) Cross-species induction of luminescence in the quorum-sensing bacterium Vibrio harveyi. J Bacteriol 179:4043–4045. https://doi.org/10.1128/JB.179.12.4043-4045.1997
Ben Said M, Masahiro O, Hassen A (2010) Detection of viable but non cultivable Escherichia coli after UV irradiation using a lytic Qβ phage. Ann Microbiol 60:121–127. https://doi.org/10.1007/s13213-010-0017-4
Bergkessel M, Basta DW, Newman DK (2016) The physiology of growth arrest: uniting molecular and environmental microbiology. Nat Rev Microbiol 14:549–562. https://doi.org/10.1038/nrmicro.2016.107
Boaretti M, Lleò MDM, Bonato B et al (2003) Involvement of rpoS in the survival of Escherichia coli in the viable but non-culturable state. Environ Microbiol 5:986–996. https://doi.org/10.1046/j.1462-2920.2003.00497.x
Bogosian G, Bourneuf EV (2001) A matter of bacterial life and death. EMBO Rep 2:770–774. https://doi.org/10.1093/embo-reports/kve182
Bollmann A, Palumbo AV, Lewis K, Epstein SS (2010) Isolation and physiology of bacteria from contaminated subsurface sediments. Appl Environ Microbiol 76:7413–7419. https://doi.org/10.1128/AEM.00376-10
Bounedjoum N, Bodor A, Laczi K et al (2018) Assessment of potentially functional hydrocarbon-degrader bacterial communities in response to Micrococcus luteus EOM using culture-dependent and culture-independent methods. New Biotechnol 44:S134–S135. https://doi.org/10.1016/j.nbt.2018.05.1091
Buerger S, Spoering A, Gavrish E et al (2012a) Microbial scout hypothesis, stochastic exit from dormancy, and the nature of slow growers. Appl Environ Microbiol 78:3221–3228. https://doi.org/10.1128/AEM.07307-11
Buerger S, Spoering A, Gavrish E et al (2012b) Microbial scout hypothesis and microbial discovery. Appl Environ Microbiol 78:3229–3233. https://doi.org/10.1128/AEM.07308-11
Bury-Moné S, Sclavi B (2017) Stochasticity of gene expression as a motor of epigenetics in bacteria: from individual to collective behaviors. Res Microbiol. https://doi.org/10.1016/j.resmic.2017.03.009
Cavigelli MA, Robertson GP, Klug MJ (1995) Fatty acid methyl ester (FAME) profiles as measures of soil microbial community structure. Plant Soil 170:99–113. https://doi.org/10.1007/BF02183058
Chandra R, Kumar V (2017) Detection of androgenic-mutagenic compounds and potential autochthonous bacterial communities during in situ bioremediation of post-methanated distillery sludge. Front Microbiol 8:1–18. https://doi.org/10.3389/fmicb.2017.00887
Chemerys A, Pelletier E, Cruaud C et al (2014) Characterization of novel polycyclic aromatic hydrocarbon dioxygenases from the bacterial metagenomic DNA of a contaminated soil. Appl Environ Microbiol 80:6591–6600. https://doi.org/10.1128/AEM.01883-14
Chen S, Li X, Wang Y et al (2018) Induction of Escherichia coli into a VBNC state through chlorination/chloramination and differences in characteristics of the bacterium between states. Water Res 142:279–288. https://doi.org/10.1016/J.WATRES.2018.05.055
Cohen-Gonsaud M (2004) Resuscitation-promoting factors possess a lysozyme-like domain. Trends Biochem Sci 29:7–10. https://doi.org/10.1016/j.tibs.2003.10.009
Connon SA, Giovannoni SJ (2002) High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl Environ Microbiol 68:3878–3885. https://doi.org/10.1128/AEM.68.8.3878-3885.2002
Cunningham E, O’Byrne C, Oliver JD (2009) Effect of weak acids on Listeria monocytogenes survival: evidence for a viable but nonculturable state in response to low pH. Food Control 20:1141–1144. https://doi.org/10.1016/j.foodcont.2009.03.005
D’Onofrio A, Crawford JM, Stewart EJ et al (2010) Siderophores from neighboring organisms promote the growth of uncultured bacteria. Chem Biol 17:254–264. https://doi.org/10.1016/j.chembiol.2010.02.010
Davis KER, Joseph SJ, Janssen PH (2005) Effects of growth medium, inoculum size, and incubation time on culturability and isolation of soil bacteria. Appl Environ Microbiol 71:826–834. https://doi.org/10.1128/AEM.71.2.826-834.2005
Demain AL, Sanchez S (2009) Microbial drug discovery: 80 years of progress. J Antibiot (Tokyo) 62:5–16. https://doi.org/10.1038/ja.2008.16
Dewi Puspita I, Kamagata Y, Tanaka M et al (2012) Are uncultivated bacteria really uncultivable? Microbes Environ 27:356–366. https://doi.org/10.1264/jsme2.ME12092
Dhiaf A, Bakhrouf A, Witzel K-P (2008) Resuscitation of eleven-year VBNC Citrobacter. J Water Health 6:565–568
Ding L, Yokota A (2010) Curvibacter isolated from well. Water 271:267–271
Ding L, Hirose T, Yokota A (2007) Amycolatopsis echigonensis sp. nov. and Amycolatopsis niigatensis sp. nov., novel actinomycetes isolated from a filtration substrate. Int J Syst Evol Microbiol 57:1747–1751. https://doi.org/10.1099/ijs.0.64791-0
Ding L, Hirose T, Yokota A (2009) Four novel Arthrobacter species isolated from filtration substrate. Int J Syst Evol Microbiol 59:856–862. https://doi.org/10.1099/ijs.0.65301-0
Ding L, Zhang P, Hong H et al (2012) Cloning and expression of Micrococcus luteus IAM 14879 Rpf and its role in the recovery of the VBNC state in Rhodococcus sp. DS471. Wei Sheng Wu Xue Bao 52:77–82
Dong X, Greening C, Rattray JE et al (2019) Metabolic potential of uncultured bacteria and archaea associated with petroleum seepage in deep-sea sediments. Nat Commun 10:1816. https://doi.org/10.1038/s41467-019-09747-0
Dworkin J, Shah IM (2010) Exit from dormancy in microbial organisms. Nat Rev Microbiol 8:890–896. https://doi.org/10.1038/nrmicro2453
Epstein SS (2009a) General model of microbial uncultivability. Springer, Berlin, pp 131–159
Epstein SS (2013) The phenomenon of microbial uncultivability. Curr Opin Microbiol 16:636–642. https://doi.org/10.1016/j.mib.2013.08.003
Fakruddin M, Bin Mannan KS, Andrews S (2013) Viable but nonculturable bacteria: food safety and public health perspective. ISRN Microbiol 2013:1–6. https://doi.org/10.1155/2013/703813
Ferrari BC, Binnerup SJ, Gillings M (2005) Microcolony cultivation on a soil substrate membrane system selects for previously uncultured soil bacteria. Appl Environ Microbiol 71:8714–8720. https://doi.org/10.1128/AEM.71.12.8714-8720.2005
Fida TT, Moreno-Forero SK, Breugelmans P et al (2017) Physiological and transcriptome response of the polycyclic aromatic hydrocarbon degrading Novosphingobium sp. LH128 after inoculation in soil. Environ Sci Technol. https://doi.org/10.1021/acs.est.6b03822
Freestone PP, Haigh RD, Williams PH et al (1999) Stimulation of bacterial growth by heat-stable, norepinephrine-induced autoinducers. FEMS Microbiol Lett 172:53–60. https://doi.org/10.1111/j.1574-6968.1999.tb13449.x
Fu H, Wei Y, Zou Y et al (2014) Research progress on the Actinomyces arthrobacter. Adv Microbiol 4:747–753
Gavrish E, Bollmann A, Epstein S, Lewis K (2008) A trap for in situ cultivation of filamentous actinobacteria. J Microbiol Methods 72:257–262. https://doi.org/10.1016/j.mimet.2007.12.009
Giagnoni L, Arenella M, Galardi E et al (2018) Bacterial culturability and the viable but non-culturable (VBNC) state studied by a proteomic approach using an artificial soil. Soil Biol Biochem 118:51–58. https://doi.org/10.1016/J.SOILBIO.2017.12.004
Gilden RC, Huffling K, Sattler B (2010) Pesticides and health risks. JOGNN J Obstet Gynecol Neonatal Nurs 39:103–110. https://doi.org/10.1111/j.1552-6909.2009.01092.x
Gupta RK, Srivastava R (2012) Resuscitation promoting factors: a family of microbial proteins in survival and resuscitation of dormant mycobacteria. Indian J Microbiol 52:114–121. https://doi.org/10.1007/s12088-011-0202-6
Hahn MW, Koll U, Schmidt J (2019) Isolation and cultivation of bacteria. Springer, Cham, pp 313–351
Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68:669–685. https://doi.org/10.1128/MMBR.68.4.669-685.2004
Haruta S, Kanno N (2015) Survivability of microbes in natural environments and their ecological impacts. Microbes Environ 30:123–125. https://doi.org/10.1264/jsme2.ME3002rh
Hegedüs B, Kós PB, Bende G et al (2017) Starvation- and xenobiotic-related transcriptomic responses of the sulfanilic acid-degrading bacterium, Novosphingobium resinovorum SA1. Appl Microbiol Biotechnol. https://doi.org/10.1007/s00253-017-8553-5
Hegedűs B, Kós PB, Bálint B et al (2017) Complete genome sequence of Novosphingobium resinovorum SA1, a versatile xenobiotic-degrading bacterium capable of utilizing sulfanilic acid. J Biotechnol 241:76–80. https://doi.org/10.1016/j.jbiotec.2016.11.013
Hofer U (2018) The majority is uncultured. Nat Rev Microbiol 16:716–717. https://doi.org/10.1038/s41579-018-0097-x
Hutchison EA, Miller DA, Angert ER (2014) Sporulation in bacteria: beyond the standard model. Microbiol Spectr. https://doi.org/10.1128/microbiolspec.TBS-0013-2012.Correspondence
Janssen PH (2009) Dormant microbes: scouting ahead or plodding along? Nature 458:831. https://doi.org/10.1038/458831a
Jin Y, Gan G, Yu X et al (2017) Isolation of viable but non-culturable bacteria from printing and dyeing wastewater bioreactor based on resuscitation promoting factor. Curr Microbiol 74:787–797. https://doi.org/10.1007/s00284-017-1240-z
Kaeberlein T, Lewis K, Epstein SS (2002) Isolating “uncultivable” microorganisms in pure culture in a simulated natural environment. Science 296:1127–1129. https://doi.org/10.1126/science.1070633
Kang JW (2014) Removing environmental organic pollutants with bioremediation and phytoremediation. Biotechnol Lett 36:1129–1139. https://doi.org/10.1007/s10529-014-1466-9
Ke Q, Zhang Y, Wu X et al (2018) Sustainable biodegradation of phenol by immobilized Bacillus sp. SAS19 with porous carbonaceous gels as carriers. J Environ Manag 222:185–189. https://doi.org/10.1016/J.JENVMAN.2018.05.061
Keep NH, Ward JM, Cohen-Gonsaud M, Henderson B (2006) Wake up! Peptidoglycan lysis and bacterial non-growth states. Trends Microbiol 14:271–276. https://doi.org/10.1016/j.tim.2006.04.003
Kell D (2009) Dormant microbes: time to revive some old ideas. Nature 458:831. https://doi.org/10.1038/458831b
Kell DB, Kaprelyants AS, Grafen A (1995) Pheromones, social behaviour and the functions of secondary metabolism in bacteria. Trends Ecol Evol 10:126–129. https://doi.org/10.1016/S0169-5347(00)89013-8
Kell DB, Kaprelyants AS, Weichart DH et al (1998) Viability and activity in readily culturable bacteria: a review and discussion of the practical issues. Antonie van Leeuwenhoek Int J Gen Mol Microbiol 73:169–187. https://doi.org/10.1023/A:1000664013047
Kis Á, Laczi K, Zsíros S et al (2015) Biodegradation of animal fats and vegetable oils by Rhodococcus erythropolis PR4. Int Biodeterior Biodegrad 105:114–119. https://doi.org/10.1016/j.ibiod.2015.08.015
Kis ÁE, Laczi K, Zsíros S et al (2017) Characterization of the Rhodococcus sp. MK1 strain and its pilot application for bioremediation of diesel oil-contaminated soil. Acta Microbiol Immunol Hung 64:463–482. https://doi.org/10.1556/030.64.2017.037
Kogure K, Simidu U, Taga N (1979) A tentative direct microscopic method for counting living marine bacteria. Can J Microbiol 25:415–420. https://doi.org/10.1139/m79-063
Koltunov V, Greenblatt CL, Goncharenko AV et al (2010) Structural changes and cellular localization of resuscitation-promoting factor in environmental isolates of Micrococcus luteus. Microb Ecol 59:296–310. https://doi.org/10.1007/s00248-009-9573-1
Kuppusamy S, Palanisami T, Megharaj M et al (2016) In-situ remediation approaches for the management of contaminated sites: a comprehensive overview. Springer, Berlin, pp 1–115
Labana S, Singh OV, Basu A et al (2005) A microcosm study on bioremediation of p-nitrophenol-contaminated soil using Arthrobacter protophormiae RKJ100. Appl Microbiol Biotechnol. https://doi.org/10.1007/s00253-005-1926-1
Laczi K, Kis Á, Horváth B et al (2015) Metabolic responses of Rhodococcus erythropolis PR4 grown on diesel oil and various hydrocarbons. Appl Microbiol Biotechnol 99:9745–9759. https://doi.org/10.1007/s00253-015-6936-z
Lankford CE, Walker JR, Reeves JB et al (1966) Inoculum-dependent division lag of Bacillus cultures and its relation to an endogenous factor(s) (“schizokinen”). J Bacteriol 91:1070–1079
Lennon JT, Jones SE (2011) Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat Rev Microbiol 9:119–130. https://doi.org/10.1038/nrmicro2504
Lewis K, Epstein S, D’Onofrio A, Ling LL (2010) Uncultured microorganisms as a source of secondary metabolites. J Antibiot (Tokyo) 63:468–476. https://doi.org/10.1038/ja.2010.87
Li B, Furihata K, Ding LX, Yokota A (2007) Rhodococcus kyotonensis sp. nov., a novel actinomycete isolated from soil. Int J Syst Evol Microbiol 57:1956–1959. https://doi.org/10.1099/ijs.0.64770-0
Li L, Mendis N, Trigui H et al (2014a) The importance of the viable but non-culturable state in human bacterial pathogens. Front Microbiol 5:1. https://doi.org/10.3389/fmicb.2014.00258
Li SH, Jin Y, Cheng J et al (2014b) Gordonia jinhuaensis sp. nov., a novel actinobacterium, isolated from a VBNC (viable but non-culturable) state in pharmaceutical wastewater. Antonie van Leeuwenhoek Int J Gen Mol Microbiol 106:347–356. https://doi.org/10.1007/s10482-014-0207-3
Li SH, Yu XY, Park DJ et al (2015) Rhodococcus soli sp. nov., an actinobacterium isolated from soil using a resuscitative technique. Antonie van Leeuwenhoek Int J Gen Mol Microbiol 107:357–366. https://doi.org/10.1007/s10482-014-0334-x
Li Z, Zhang Y, Wang Y et al (2018) A new approach of Rpf addition to explore bacterial consortium for enhanced phenol degradation under high salinity conditions. Curr Microbiol 75:1046–1054. https://doi.org/10.1007/s00284-018-1489-x
Liu Y, Su X, Lu L et al (2016) A novel approach to enhance biological nutrient removal using a culture supernatant from Micrococcus luteus containing resuscitation-promoting factor (Rpf) in SBR process. Environ Sci Pollut Res 23:4498–4508. https://doi.org/10.1007/s11356-015-5603-3
Locey KJ, Lennon JT (2016) Scaling laws predict global microbial diversity. Proc Natl Acad Sci USA 113:5970–5975. https://doi.org/10.1073/pnas.1521291113
Locey KJ, Fisk MC, Lennon JT (2017) Microscale insight into microbial seed banks. Front Microbiol 7:2040. https://doi.org/10.3389/fmicb.2016.02040
Loviso CL, Lozada M, Guibert LM et al (2015) Metagenomics reveals the high polycyclic aromatic hydrocarbon-degradation potential of abundant uncultured bacteria from chronically polluted subantarctic and temperate coastal marine environments. J Appl Microbiol 119:411–424. https://doi.org/10.1111/jam.12843
Martin F, Malagnoux L, Violet F et al (2013) Diversity and catalytic potential of PAH-specific ring-hydroxylating dioxygenases from a hydrocarbon-contaminated soil. Appl Microbiol Biotechnol 97:5125–5135. https://doi.org/10.1007/s00253-012-4335-2
Marzorati M, Wittebolle L, Boon N et al (2008) How to get more out of molecular fingerprints: practical tools for microbial ecology. Environ Microbiol 10:1571–1581. https://doi.org/10.1111/j.1462-2920.2008.01572.x
Megharaj M, Ramakrishnan B, Venkateswarlu K et al (2011) Bioremediation approaches for organic pollutants: a critical perspective. Environ Int 37:1362–1375. https://doi.org/10.1016/j.envint.2011.06.003
Morris JJ, Lenski RE, Zinser ER (2012) The Black Queen Hypothesis: evolution of dependencies through adaptive gene loss. MBio 3:e00036-12. https://doi.org/10.1128/mBio.00036-12
Mukamolova GV, Yanopolskaya ND, Kell DB, Kaprelyants AS (1998a) On resuscitation from the dormant state of Micrococcus luteus. Antonie Van Leeuwenhoek 73:237–243. https://doi.org/10.1023/A:1000881918216
Mukamolova GV, Kaprelyants AS, Young DI et al (1998b) A bacterial cytokine. Proc Natl Acad Sci 95:8916–8921. https://doi.org/10.1073/pnas.95.15.8916
Mukamolova GV, Turapov OA, Kazarian K et al (2002) The rpf gene of Micrococcus luteus encodes an essential secreted growth factor. Mol Microbiol 46:611–621. https://doi.org/10.1046/j.1365-2958.2002.03183.x
Mukamolova GV, Murzin AG, Salina EG et al (2006) Muralytic activity of Micrococcus luteus Rpf and its relationship to physiological activity in promoting bacterial growth and resuscitation. Mol Microbiol 59:84–98. https://doi.org/10.1111/j.1365-2958.2005.04930.x
Murugan K, Vasudevan N (2018) Intracellular toxicity exerted by PCBs and role of VBNC bacterial strains in biodegradation. Ecotoxicol Environ Saf 157:40–60. https://doi.org/10.1016/J.ECOENV.2018.03.014
Musumeci MA, Loviso CL, Lozada M et al (2019) Substrate specificities of aromatic ring-hydroxylating oxygenases of an uncultured gammaproteobacterium from chronically-polluted subantarctic sediments. Int Biodeterior Biodegrad 137:127–136. https://doi.org/10.1016/J.IBIOD.2018.12.005
Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726. https://doi.org/10.1074/JBC.270.45.26723
Nichols D, Cahoon N, Trakhtenberg EM, et al (2010) Use of ichip for high-throughput in situ cultivation of “uncultivable” microbial species. Appl Environ Microbiol 76:2445–2450. https://doi.org/10.1128/AEM.01754-09
Nikitushkin VD, Demina GR, Shleeva MO et al (2015) A product of RpfB and RipA joint enzymatic action promotes the resuscitation of dormant mycobacteria. FEBS J 282:2500–2511. https://doi.org/10.1111/febs.13292
Nikitushkin VD, Demina GR, Kaprelyants AS (2016) Rpf proteins are the factors of reactivation of the dormant forms of actinobacteria. Biochemistry 81:1719–1734. https://doi.org/10.1134/S0006297916130095
Oliver JD (1993) Formation of viable but nonculturable cells. In: Kjelleberg S (ed) Starvation in bacteria. Springer, Boston, MA
Oliver J (2000) The viable but nonculturable state and cellular resuscitation. In: Bell CR, Brylinsky M, Johnson-Green P (eds) Microbial systems: new frontiers. Atlantic Canada Society for Microbial Ecology, Halifax, pp 723–730
Oliver JD (2005) The viable but nonculturable state in bacteria. J Microbiol 43:93–100
Oliver JD (2010) Recent findings on the viable but nonculturable state in pathogenic bacteria. FEMS Microbiol Rev 34:415–425. https://doi.org/10.1111/j.1574-6976.2009.00200.x
Oliver JD (2016) The viable but nonculturable state in bacteria. Status update. This dormant form of bacteria was first appreciated in 1982; now skeptics recognize this state as a bacterial response to stress and a strategy for survival. J Microbiol 43:93–100
Oliver JD, Dagher M, Linden K (2005) Induction of Escherichia coli and Salmonella typhimurium into the viable but nonculturable state following chlorination of wastewater. J Water Health 3:249–257
Overmann J, Abt B, Sikorski J (2017) Present and future of culturing bacteria. Annu Rev Microbiol 71:711–730. https://doi.org/10.1146/annurev-micro-090816-093449
Paidhungat M, Setlow P (2000) Role of ger proteins in nutrient and nonnutrient triggering of spore germination in Bacillus subtilis. J Bacteriol 182:2513–2519. https://doi.org/10.1128/JB.182.9.2513-2519.2000
Pande S, Kost C (2017) Special issue: from one to many bacterial unculturability and the formation of intercellular metabolic networks. Trends Microbiol. https://doi.org/10.1016/j.tim.2017.02.015
Panutdaporn N, Kawamoto K, Asakura H, Makino S-I (2006) Resuscitation of the viable but non-culturable state of Salmonella enterica serovar Oranienburg by recombinant resuscitation-promoting factor derived from Salmonella typhimurium strain LT2. Int J Food Microbiol 106:241–247. https://doi.org/10.1016/j.ijfoodmicro.2005.06.022
Pedrós-Alió C, Manrubia S (2016) The vast unknown microbial biosphere. Proc Natl Acad Sci USA 113:6585–6587. https://doi.org/10.1073/pnas.1606105113
Perei K, Rákhely G, Kiss I et al (2001) Biodegradation of sulfanilic acid by Pseudomonas paucimobilis. Appl Microbiol Biotechnol 55:101–107. https://doi.org/10.1007/s002530000474
Pham VHT, Kim J (2012) Cultivation of unculturable soil bacteria. Trends Biotechnol 30:475–484. https://doi.org/10.1016/j.tibtech.2012.05.007
Pinto D, Almeida V, Almeida Santos M, Chambel L (2011) Resuscitation of Escherichia coli VBNC cells depends on a variety of environmental or chemical stimuli. J Appl Microbiol 110:1601–1611. https://doi.org/10.1111/j.1365-2672.2011.05016.x
Pinto D, Santos MA, Chambel L (2015) Thirty years of viable but nonculturable state research: unsolved molecular mechanisms. Crit Rev Microbiol 41:61–76. https://doi.org/10.3109/1040841X.2013.794127
Piqueres P, Moreno Y, Alonso JL, Ferrús MA (2006) A combination of direct viable count and fluorescent in situ hybridization for estimating Helicobacter pylori cell viability. Res Microbiol 157:345–349. https://doi.org/10.1016/j.resmic.2005.09.003
Poindexter JS (1981) Oligotrophy: feast and famine existence. In: Alexander M (ed) Advances in microbial ecology. Plenum Press, New York, pp 63–89
Ramamurthy T, Ghosh A, Pazhani GP, Shinoda S (2014) Current perspectives on viable but non-culturable (VBNC) pathogenic bacteria. Front Public Heal 2:1–9. https://doi.org/10.3389/fpubh.2014.00103
Rappé MS, Giovannoni SJ (2003) The uncultured microbial majority. Annu Rev Microbiol 57:369–394. https://doi.org/10.1146/annurev.micro.57.030502.090759
Rappé MS, Connon SA, Vergin KL, Giovannoni SJ (2002) Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature 418(6898):630–633. https://doi.org/10.1038/nature00917
Rayu S, Karpouzas DG, Singh BK (2012) Emerging technologies in bioremediation: constraints and opportunities. Biodegradation 23:917–926. https://doi.org/10.1007/s10532-012-9576-3
Riesenfeld CS, Schloss PD, Handelsman J (2004) Metagenomics: genomic analysis of microbial communities. Annu Rev Genet 38:525–552. https://doi.org/10.1146/annurev.genet.38.072902.091216
Roszak DB, Grimes DJ, Colwell RR (1984) Viable but nonrecoverable stage of Salmonella enteritidis in aquatic systems. Can J Microbiol 30:334–338. https://doi.org/10.1139/m84-049
Ruggiero A, Squeglia F, Romano M et al (2016) The structure of Resuscitation promoting factor B from M. tuberculosis reveals unexpected ubiquitin-like domains. Biochim Biophys Acta Gen Subj 1860:445–451. https://doi.org/10.1016/j.bbagen.2015.11.001
Rutherford ST, Bassler BL (2012) Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med 2:a012427. https://doi.org/10.1101/cshperspect.a012427
Saha M, Sarkar S, Sarkar B et al (2016) Microbial siderophores and their potential applications: a review. Environ Sci Pollut Res 23:3984–3999. https://doi.org/10.1007/s11356-015-4294-0
Salam LB, Ilori MO, Amund OO et al (2017) Characterization of bacterial community structure in a hydrocarbon-contaminated tropical African soil. Environ Technol. https://doi.org/10.1080/09593330.2017.1317838
Salma M, Rousseaux S, Sequeira-Le Grand A et al (2013) Characterization of the viable but nonculturable (VBNC) state in Saccharomyces cerevisiae. PLoS ONE 8:e77600. https://doi.org/10.1371/journal.pone.0077600
Schloss PD, Handelsman J (2003) Biotechnological prospects from metagenomics. Curr Opin Biotechnol 14:303–310. https://doi.org/10.1016/S0958-1669(03)00067-3
Schmidt TM, Konopka AE (2009) Physiological and ecological adaptations of slow-growing, heterotrophic microbes and consequences for cultivation. Springer, Berlin, pp 257–276
Scullion J (2006) Remediating polluted soils. Naturwissenschaften 93:51–65. https://doi.org/10.1007/s00114-005-0079-5
Serpaggi V, Remize F, Recorbet G et al (2012) Characterization of the “viable but nonculturable” (VBNC) state in the wine spoilage yeast Brettanomyces. Food Microbiol 30:438–447. https://doi.org/10.1016/j.fm.2011.12.020
Shi X, Xie Y, Zhou X (2017) Food-borne Pathogenic Bacteria. In: Jen JJS, Chen J (eds) Food safety in China: science, technology, management and regulation. Wiley, New Jersey, pp 65–82
Shleeva MO, Bagramyan K, Telkov MV et al (2002) Formation and resuscitation of “non-culturable” cells of Rhodococcus rhodochrous and Mycobacterium tuberculosis in prolonged stationary phase. Microbiology 148:1581–1591. https://doi.org/10.1099/00221287-148-5-1581
Shoemaker WR, Lennon JT (2018) Evolution with a seed bank: the population genetic consequences of microbial dormancy. Evol Appl 11:60–75. https://doi.org/10.1111/eva.12557
Singleton DR, Hu J, Aitken MD (2012) Heterologous expression of polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenase genes from a novel pyrene-degrading betaproteobacterium. Appl Environ Microbiol 78:3552–3559. https://doi.org/10.1128/AEM.00173-12
Smets W, Leff JW, Bradford MA et al (2016) A method for simultaneous measurement of soil bacterial abundances and community composition via 16S rRNA gene sequencing. Soil Biol Biochem 96:145–151. https://doi.org/10.1016/j.soilbio.2016.02.003
Sperandio V, Torres AG, Jarvis B et al (2003) Bacteria-host communication: the language of hormones. Proc Natl Acad Sci USA 100:8951–8956. https://doi.org/10.1073/pnas.1537100100
Sturm A, Dworkin J (2015) Phenotypic diversity as a mechanism to exit cellular dormancy. Curr Biol 25:2272–2277. https://doi.org/10.1016/j.cub.2015.07.018
Su X, Shen X, Ding L, Yokota A (2012) Study on the flocculability of the Arthrobacter sp., an actinomycete resuscitated from the VBNC state. World J Microbiol Biotechnol 28:91–97. https://doi.org/10.1007/s11274-011-0795-2
Su X, Chen X, Hu J et al (2013a) Exploring the potential environmental functions of viable but non-culturable bacteria. World J Microbiol Biotechnol 29:2213–2218. https://doi.org/10.1007/s11274-013-1390-5
Su X, Shen H, Yao X et al (2013b) A novel approach to stimulate the biphenyl-degrading potential of bacterial community from PCBs-contaminated soil of e-waste recycling sites. Bioresour Technol 146:27–34. https://doi.org/10.1016/j.biortech.2013.07.028
Su X, Liu Y, Hu J et al (2014) Optimization of protein production by Micrococcus luteus for exploring pollutant-degrading uncultured bacteria. Springerplus 3:117. https://doi.org/10.1186/2193-1801-3-117
Su X, Liu Y, Hashmi MZ et al (2015a) Rhodococcus biphenylivorans sp. nov., a polychlorinated biphenyl-degrading bacterium. Antonie van Leeuwenhoek Int J Gen Mol Microbiol 107:55–63. https://doi.org/10.1007/s10482-014-0303-4
Su X, Sun F, Wang Y et al (2015b) Identification, characterization and molecular analysis of the viable but nonculturable Rhodococcus biphenylivorans. Sci Rep 5:18590. https://doi.org/10.1038/srep18590
Su X, Zhang Q, Hu J et al (2015c) Enhanced degradation of biphenyl from PCB-contaminated sediments: the impact of extracellular organic matter from Micrococcus luteus. Appl Microbiol Biotechnol 99:1989–2000. https://doi.org/10.1007/s00253-014-6108-6
Su XM, Liu YD, Hashmi MZ et al (2015d) Culture-dependent and culture-independent characterization of potentially functional biphenyl-degrading bacterial community in response to extracellular organic matter from Micrococcus luteus. Microb Biotechnol 8:569–578. https://doi.org/10.1111/1751-7915.12266
Su X, Guo L, Ding L et al (2016) Induction of viable but nonculturable state in Rhodococcus and transcriptome analysis using RNA-seq. PLoS ONE 11:e0147593. https://doi.org/10.1371/journal.pone.0147593
Su X, Wang Y, Xue B et al (2018a) Resuscitation of functional bacterial community for enhancing biodegradation of phenol under high salinity conditions based on Rpf. Bioresour Technol 261:394–402. https://doi.org/10.1016/J.BIORTECH.2018.04.048
Su X, Zhang S, Mei R et al (2018b) Resuscitation of viable but non-culturable bacteria to enhance the cellulose-degrading capability of bacterial community in composting. Microb Biotechnol 11:527–536. https://doi.org/10.1111/1751-7915.13256
Su XM, Bamba AM, Zhang S et al (2018c) Revealing potential functions of VBNC bacteria in polycyclic aromatic hydrocarbons biodegradation. Lett Appl Microbiol 66:277–283. https://doi.org/10.1111/lam.12853
Su X, Li S, Cai J et al (2019a) Aerobic degradation of 3,3′,4,4′-tetrachlorobiphenyl by a resuscitated strain Castellaniella sp. SPC4: kinetics model and pathway for biodegradation. Sci Total Environ 688:917–925. https://doi.org/10.1016/J.SCITOTENV.2019.06.364
Su X, Wang Y, Xue B et al (2019b) Impact of resuscitation promoting factor (Rpf) in membrane bioreactor treating high-saline phenolic wastewater: performance robustness and Rpf-responsive bacterial populations. Chem Eng J 357:715–723. https://doi.org/10.1016/J.CEJ.2018.09.197
Su X, Xue B, Wang Y et al (2019c) Bacterial community shifts evaluation in the sediments of Puyang River and its nitrogen removal capabilities exploration by resuscitation promoting factor. Ecotoxicol Environ Saf 179:188–197. https://doi.org/10.1016/J.ECOENV.2019.04.067
Telkov MV, Demina GR, Voloshin SA et al (2006) Proteins of the Rpf (resuscitation promoting factor) family are peptidoglycan hydrolases. Biochemistry 71:414–422. https://doi.org/10.1134/S0006297906040092
Traxler MF, Seyedsayamdost MR, Clardy J, Kolter R (2012) Interspecies modulation of bacterial development through iron competition and siderophore piracy. Mol Microbiol 86:628–644. https://doi.org/10.1111/mmi.12008
Tripathi V, Edrisi SA, Chen B et al (2017) Biotechnological advances for restoring degraded land for sustainable development land restoration for regaining essential ecosystem services. Trends Biotechnol. https://doi.org/10.1016/j.tibtech.2017.05.001
Tyagi M, da Fonseca MMR, de Carvalho CCCR (2011) Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation 22:231–241. https://doi.org/10.1007/s10532-010-9394-4
van Vliet S (2015) Bacterial dormancy: how to decide when to wake up. Curr Biol 25:R753–R755. https://doi.org/10.1016/j.cub.2015.07.039
Villas-Bôas SG, Bruheim P (2007) The potential of metabolomics tools in bioremediation studies. Omi A J Integr Biol 11:305–313. https://doi.org/10.1089/omi.2007.0005
Wandersman C, Delepelaire P (2004) Bacterial iron sources: from siderophores to hemophores. Annu Rev Microbiol 58:611–647. https://doi.org/10.1146/annurev.micro.58.030603.123811
Waters CM, Bassler BL (2006) The Vibrio harveyi quorum-sensing system uses shared regulatory components to discriminate between multiple autoinducers. Genes Dev 20:2754–2767. https://doi.org/10.1101/gad.1466506
Wilson MC, Piel J (2013) Metagenomic approaches for exploiting uncultivated bacteria as a resource for novel biosynthetic enzymology. Chem Biol 20:636–647. https://doi.org/10.1016/j.chembiol.2013.04.011
Xiong M, Hu Z, Zhang Y et al (2013) Survival of GFP-tagged Rhodococcus sp. D310-1 in chlorimuron-ethyl-contaminated soil and its effects on the indigenous microbial community. J Hazard Mater 252–253:347–354. https://doi.org/10.1016/j.jhazmat.2013.02.054
Xu Y, Vetsigian K (2017) Phenotypic variability and community interactions of germinating Streptomyces spores. Sci Rep 7:1–13
Xu H-S, Roberts N, Singleton FL et al (1982) Survival and viability of nonculturableEscherichia coli andVibrio cholerae in the estuarine and marine environment. Microb Ecol 8:313–323. https://doi.org/10.1007/BF02010671
Yu XY, Zhang L, Ren B et al (2015) Arthrobacter liuii sp. nov., resuscitated from Xinjiang desert soil. Int J Syst Evol Microbiol 65:896–901. https://doi.org/10.1099/ijs.0.000037
Zengler K, Toledo G, Rappe M, et al (2002) Cultivating the uncultured. Proc Natl Acad Sci U S A 99:15681–15686. https://doi.org/10.1073/pnas.252630999
Zhang X, Nesme J, Simonet P, Frostegård Å (2012) Fate of invading bacteria in soil and survival of transformants after simulated uptake of transgenes, as evaluated by a model system based on lindane degradation. Res Microbiol 163:200–210. https://doi.org/10.1016/j.resmic.2012.01.007
Zhang D, Berry JP, Zhu D, et al (2015) Magnetic nanoparticle-mediated isolation of functional bacteria in a complex microbial community. ISME J 9:603–614. https://doi.org/10.1038/ismej.2014.161
Zhao S, Song X, Zhao Y et al (2015) Protective and therapeutic effects of the resuscitation-promoting factor domain and its mutants against Mycobacterium tuberculosis in mice. Pathog Dis 73:e31908. https://doi.org/10.1093/femspd/ftu025
Zhao H, Zhang Y, Xiao X et al (2017a) Different phenanthrene-degrading bacteria cultured by in situ soil substrate membrane system and traditional cultivation. Int Biodeterior Biodegrad 117:269–277. https://doi.org/10.1016/j.ibiod.2016.12.016
Zhao X, Zhong J, Wei C et al (2017b) Current perspectives on viable but non-culturable state in foodborne pathogens. Front Microbiol. https://doi.org/10.3389/fmicb.2017.00580
Zou Y, Fu H, Chen Y et al (2014) Viable but non-culturable bacteria in bioreactor-based pharmaceutical wastewater. Agric Sci Technol 15:1299–1303