Challenges of unculturable bacteria: environmental perspectives
Tóm tắt
Từ khóa
Tài liệu tham khảo
Alvarez PJJ, Illman WA, (Walter A, Wiley InterScience (Online service) (2006) Bioremediation and natural attenuation: process fundamentals and mathematical models. Wiley, Chichester
Austin B (2017) The value of cultures to modern microbiology. Antonie van Leeuwenhoek Int J Gen Mol Microbiol. https://doi.org/10.1007/s10482-017-0840-8
Ayrapetyan M, Oliver JD (2016) The viable but non-culturable state and its relevance in food safety. Curr Opin Food Sci 8:127–133. https://doi.org/10.1016/j.cofs.2016.04.010
Ayrapetyan M, Williams TC, Oliver JD (2014) Interspecific quorum sensing mediates the resuscitation of viable but nonculturable vibrios. Appl Environ Microbiol 80:2478–2483. https://doi.org/10.1128/AEM.00080-14
Bari SMN, Roky MK, Mohiuddin M et al (2013) Quorum-sensing autoinducers resuscitate dormant Vibrio cholerae in environmental water samples. Proc Natl Acad Sci USA 110:9926–9931. https://doi.org/10.1073/pnas.1307697110
Bassler BL, Greenberg EP, Stevens AM (1997) Cross-species induction of luminescence in the quorum-sensing bacterium Vibrio harveyi. J Bacteriol 179:4043–4045. https://doi.org/10.1128/JB.179.12.4043-4045.1997
Ben Said M, Masahiro O, Hassen A (2010) Detection of viable but non cultivable Escherichia coli after UV irradiation using a lytic Qβ phage. Ann Microbiol 60:121–127. https://doi.org/10.1007/s13213-010-0017-4
Bergkessel M, Basta DW, Newman DK (2016) The physiology of growth arrest: uniting molecular and environmental microbiology. Nat Rev Microbiol 14:549–562. https://doi.org/10.1038/nrmicro.2016.107
Boaretti M, Lleò MDM, Bonato B et al (2003) Involvement of rpoS in the survival of Escherichia coli in the viable but non-culturable state. Environ Microbiol 5:986–996. https://doi.org/10.1046/j.1462-2920.2003.00497.x
Bogosian G, Bourneuf EV (2001) A matter of bacterial life and death. EMBO Rep 2:770–774. https://doi.org/10.1093/embo-reports/kve182
Bollmann A, Palumbo AV, Lewis K, Epstein SS (2010) Isolation and physiology of bacteria from contaminated subsurface sediments. Appl Environ Microbiol 76:7413–7419. https://doi.org/10.1128/AEM.00376-10
Bounedjoum N, Bodor A, Laczi K et al (2018) Assessment of potentially functional hydrocarbon-degrader bacterial communities in response to Micrococcus luteus EOM using culture-dependent and culture-independent methods. New Biotechnol 44:S134–S135. https://doi.org/10.1016/j.nbt.2018.05.1091
Buerger S, Spoering A, Gavrish E et al (2012a) Microbial scout hypothesis, stochastic exit from dormancy, and the nature of slow growers. Appl Environ Microbiol 78:3221–3228. https://doi.org/10.1128/AEM.07307-11
Buerger S, Spoering A, Gavrish E et al (2012b) Microbial scout hypothesis and microbial discovery. Appl Environ Microbiol 78:3229–3233. https://doi.org/10.1128/AEM.07308-11
Bury-Moné S, Sclavi B (2017) Stochasticity of gene expression as a motor of epigenetics in bacteria: from individual to collective behaviors. Res Microbiol. https://doi.org/10.1016/j.resmic.2017.03.009
Cavigelli MA, Robertson GP, Klug MJ (1995) Fatty acid methyl ester (FAME) profiles as measures of soil microbial community structure. Plant Soil 170:99–113. https://doi.org/10.1007/BF02183058
Chandra R, Kumar V (2017) Detection of androgenic-mutagenic compounds and potential autochthonous bacterial communities during in situ bioremediation of post-methanated distillery sludge. Front Microbiol 8:1–18. https://doi.org/10.3389/fmicb.2017.00887
Chemerys A, Pelletier E, Cruaud C et al (2014) Characterization of novel polycyclic aromatic hydrocarbon dioxygenases from the bacterial metagenomic DNA of a contaminated soil. Appl Environ Microbiol 80:6591–6600. https://doi.org/10.1128/AEM.01883-14
Chen S, Li X, Wang Y et al (2018) Induction of Escherichia coli into a VBNC state through chlorination/chloramination and differences in characteristics of the bacterium between states. Water Res 142:279–288. https://doi.org/10.1016/J.WATRES.2018.05.055
Cohen-Gonsaud M (2004) Resuscitation-promoting factors possess a lysozyme-like domain. Trends Biochem Sci 29:7–10. https://doi.org/10.1016/j.tibs.2003.10.009
Connon SA, Giovannoni SJ (2002) High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl Environ Microbiol 68:3878–3885. https://doi.org/10.1128/AEM.68.8.3878-3885.2002
Cunningham E, O’Byrne C, Oliver JD (2009) Effect of weak acids on Listeria monocytogenes survival: evidence for a viable but nonculturable state in response to low pH. Food Control 20:1141–1144. https://doi.org/10.1016/j.foodcont.2009.03.005
D’Onofrio A, Crawford JM, Stewart EJ et al (2010) Siderophores from neighboring organisms promote the growth of uncultured bacteria. Chem Biol 17:254–264. https://doi.org/10.1016/j.chembiol.2010.02.010
Davis KER, Joseph SJ, Janssen PH (2005) Effects of growth medium, inoculum size, and incubation time on culturability and isolation of soil bacteria. Appl Environ Microbiol 71:826–834. https://doi.org/10.1128/AEM.71.2.826-834.2005
Demain AL, Sanchez S (2009) Microbial drug discovery: 80 years of progress. J Antibiot (Tokyo) 62:5–16. https://doi.org/10.1038/ja.2008.16
Dewi Puspita I, Kamagata Y, Tanaka M et al (2012) Are uncultivated bacteria really uncultivable? Microbes Environ 27:356–366. https://doi.org/10.1264/jsme2.ME12092
Dhiaf A, Bakhrouf A, Witzel K-P (2008) Resuscitation of eleven-year VBNC Citrobacter. J Water Health 6:565–568
Ding L, Yokota A (2010) Curvibacter isolated from well. Water 271:267–271
Ding L, Hirose T, Yokota A (2007) Amycolatopsis echigonensis sp. nov. and Amycolatopsis niigatensis sp. nov., novel actinomycetes isolated from a filtration substrate. Int J Syst Evol Microbiol 57:1747–1751. https://doi.org/10.1099/ijs.0.64791-0
Ding L, Hirose T, Yokota A (2009) Four novel Arthrobacter species isolated from filtration substrate. Int J Syst Evol Microbiol 59:856–862. https://doi.org/10.1099/ijs.0.65301-0
Ding L, Zhang P, Hong H et al (2012) Cloning and expression of Micrococcus luteus IAM 14879 Rpf and its role in the recovery of the VBNC state in Rhodococcus sp. DS471. Wei Sheng Wu Xue Bao 52:77–82
Dong X, Greening C, Rattray JE et al (2019) Metabolic potential of uncultured bacteria and archaea associated with petroleum seepage in deep-sea sediments. Nat Commun 10:1816. https://doi.org/10.1038/s41467-019-09747-0
Dworkin J, Shah IM (2010) Exit from dormancy in microbial organisms. Nat Rev Microbiol 8:890–896. https://doi.org/10.1038/nrmicro2453
Epstein SS (2009a) General model of microbial uncultivability. Springer, Berlin, pp 131–159
Epstein SS (2013) The phenomenon of microbial uncultivability. Curr Opin Microbiol 16:636–642. https://doi.org/10.1016/j.mib.2013.08.003
Fakruddin M, Bin Mannan KS, Andrews S (2013) Viable but nonculturable bacteria: food safety and public health perspective. ISRN Microbiol 2013:1–6. https://doi.org/10.1155/2013/703813
Ferrari BC, Binnerup SJ, Gillings M (2005) Microcolony cultivation on a soil substrate membrane system selects for previously uncultured soil bacteria. Appl Environ Microbiol 71:8714–8720. https://doi.org/10.1128/AEM.71.12.8714-8720.2005
Fida TT, Moreno-Forero SK, Breugelmans P et al (2017) Physiological and transcriptome response of the polycyclic aromatic hydrocarbon degrading Novosphingobium sp. LH128 after inoculation in soil. Environ Sci Technol. https://doi.org/10.1021/acs.est.6b03822
Freestone PP, Haigh RD, Williams PH et al (1999) Stimulation of bacterial growth by heat-stable, norepinephrine-induced autoinducers. FEMS Microbiol Lett 172:53–60. https://doi.org/10.1111/j.1574-6968.1999.tb13449.x
Fu H, Wei Y, Zou Y et al (2014) Research progress on the Actinomyces arthrobacter. Adv Microbiol 4:747–753
Gavrish E, Bollmann A, Epstein S, Lewis K (2008) A trap for in situ cultivation of filamentous actinobacteria. J Microbiol Methods 72:257–262. https://doi.org/10.1016/j.mimet.2007.12.009
Giagnoni L, Arenella M, Galardi E et al (2018) Bacterial culturability and the viable but non-culturable (VBNC) state studied by a proteomic approach using an artificial soil. Soil Biol Biochem 118:51–58. https://doi.org/10.1016/J.SOILBIO.2017.12.004
Gilden RC, Huffling K, Sattler B (2010) Pesticides and health risks. JOGNN J Obstet Gynecol Neonatal Nurs 39:103–110. https://doi.org/10.1111/j.1552-6909.2009.01092.x
Gupta RK, Srivastava R (2012) Resuscitation promoting factors: a family of microbial proteins in survival and resuscitation of dormant mycobacteria. Indian J Microbiol 52:114–121. https://doi.org/10.1007/s12088-011-0202-6
Hahn MW, Koll U, Schmidt J (2019) Isolation and cultivation of bacteria. Springer, Cham, pp 313–351
Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68:669–685. https://doi.org/10.1128/MMBR.68.4.669-685.2004
Haruta S, Kanno N (2015) Survivability of microbes in natural environments and their ecological impacts. Microbes Environ 30:123–125. https://doi.org/10.1264/jsme2.ME3002rh
Hegedüs B, Kós PB, Bende G et al (2017) Starvation- and xenobiotic-related transcriptomic responses of the sulfanilic acid-degrading bacterium, Novosphingobium resinovorum SA1. Appl Microbiol Biotechnol. https://doi.org/10.1007/s00253-017-8553-5
Hegedűs B, Kós PB, Bálint B et al (2017) Complete genome sequence of Novosphingobium resinovorum SA1, a versatile xenobiotic-degrading bacterium capable of utilizing sulfanilic acid. J Biotechnol 241:76–80. https://doi.org/10.1016/j.jbiotec.2016.11.013
Hofer U (2018) The majority is uncultured. Nat Rev Microbiol 16:716–717. https://doi.org/10.1038/s41579-018-0097-x
Hutchison EA, Miller DA, Angert ER (2014) Sporulation in bacteria: beyond the standard model. Microbiol Spectr. https://doi.org/10.1128/microbiolspec.TBS-0013-2012.Correspondence
Janssen PH (2009) Dormant microbes: scouting ahead or plodding along? Nature 458:831. https://doi.org/10.1038/458831a
Jin Y, Gan G, Yu X et al (2017) Isolation of viable but non-culturable bacteria from printing and dyeing wastewater bioreactor based on resuscitation promoting factor. Curr Microbiol 74:787–797. https://doi.org/10.1007/s00284-017-1240-z
Kaeberlein T, Lewis K, Epstein SS (2002) Isolating “uncultivable” microorganisms in pure culture in a simulated natural environment. Science 296:1127–1129. https://doi.org/10.1126/science.1070633
Kang JW (2014) Removing environmental organic pollutants with bioremediation and phytoremediation. Biotechnol Lett 36:1129–1139. https://doi.org/10.1007/s10529-014-1466-9
Ke Q, Zhang Y, Wu X et al (2018) Sustainable biodegradation of phenol by immobilized Bacillus sp. SAS19 with porous carbonaceous gels as carriers. J Environ Manag 222:185–189. https://doi.org/10.1016/J.JENVMAN.2018.05.061
Keep NH, Ward JM, Cohen-Gonsaud M, Henderson B (2006) Wake up! Peptidoglycan lysis and bacterial non-growth states. Trends Microbiol 14:271–276. https://doi.org/10.1016/j.tim.2006.04.003
Kell D (2009) Dormant microbes: time to revive some old ideas. Nature 458:831. https://doi.org/10.1038/458831b
Kell DB, Kaprelyants AS, Grafen A (1995) Pheromones, social behaviour and the functions of secondary metabolism in bacteria. Trends Ecol Evol 10:126–129. https://doi.org/10.1016/S0169-5347(00)89013-8
Kell DB, Kaprelyants AS, Weichart DH et al (1998) Viability and activity in readily culturable bacteria: a review and discussion of the practical issues. Antonie van Leeuwenhoek Int J Gen Mol Microbiol 73:169–187. https://doi.org/10.1023/A:1000664013047
Kis Á, Laczi K, Zsíros S et al (2015) Biodegradation of animal fats and vegetable oils by Rhodococcus erythropolis PR4. Int Biodeterior Biodegrad 105:114–119. https://doi.org/10.1016/j.ibiod.2015.08.015
Kis ÁE, Laczi K, Zsíros S et al (2017) Characterization of the Rhodococcus sp. MK1 strain and its pilot application for bioremediation of diesel oil-contaminated soil. Acta Microbiol Immunol Hung 64:463–482. https://doi.org/10.1556/030.64.2017.037
Kogure K, Simidu U, Taga N (1979) A tentative direct microscopic method for counting living marine bacteria. Can J Microbiol 25:415–420. https://doi.org/10.1139/m79-063
Koltunov V, Greenblatt CL, Goncharenko AV et al (2010) Structural changes and cellular localization of resuscitation-promoting factor in environmental isolates of Micrococcus luteus. Microb Ecol 59:296–310. https://doi.org/10.1007/s00248-009-9573-1
Kuppusamy S, Palanisami T, Megharaj M et al (2016) In-situ remediation approaches for the management of contaminated sites: a comprehensive overview. Springer, Berlin, pp 1–115
Labana S, Singh OV, Basu A et al (2005) A microcosm study on bioremediation of p-nitrophenol-contaminated soil using Arthrobacter protophormiae RKJ100. Appl Microbiol Biotechnol. https://doi.org/10.1007/s00253-005-1926-1
Laczi K, Kis Á, Horváth B et al (2015) Metabolic responses of Rhodococcus erythropolis PR4 grown on diesel oil and various hydrocarbons. Appl Microbiol Biotechnol 99:9745–9759. https://doi.org/10.1007/s00253-015-6936-z
Lankford CE, Walker JR, Reeves JB et al (1966) Inoculum-dependent division lag of Bacillus cultures and its relation to an endogenous factor(s) (“schizokinen”). J Bacteriol 91:1070–1079
Lennon JT, Jones SE (2011) Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat Rev Microbiol 9:119–130. https://doi.org/10.1038/nrmicro2504
Lewis K, Epstein S, D’Onofrio A, Ling LL (2010) Uncultured microorganisms as a source of secondary metabolites. J Antibiot (Tokyo) 63:468–476. https://doi.org/10.1038/ja.2010.87
Li B, Furihata K, Ding LX, Yokota A (2007) Rhodococcus kyotonensis sp. nov., a novel actinomycete isolated from soil. Int J Syst Evol Microbiol 57:1956–1959. https://doi.org/10.1099/ijs.0.64770-0
Li L, Mendis N, Trigui H et al (2014a) The importance of the viable but non-culturable state in human bacterial pathogens. Front Microbiol 5:1. https://doi.org/10.3389/fmicb.2014.00258
Li SH, Jin Y, Cheng J et al (2014b) Gordonia jinhuaensis sp. nov., a novel actinobacterium, isolated from a VBNC (viable but non-culturable) state in pharmaceutical wastewater. Antonie van Leeuwenhoek Int J Gen Mol Microbiol 106:347–356. https://doi.org/10.1007/s10482-014-0207-3
Li SH, Yu XY, Park DJ et al (2015) Rhodococcus soli sp. nov., an actinobacterium isolated from soil using a resuscitative technique. Antonie van Leeuwenhoek Int J Gen Mol Microbiol 107:357–366. https://doi.org/10.1007/s10482-014-0334-x
Li Z, Zhang Y, Wang Y et al (2018) A new approach of Rpf addition to explore bacterial consortium for enhanced phenol degradation under high salinity conditions. Curr Microbiol 75:1046–1054. https://doi.org/10.1007/s00284-018-1489-x
Liu Y, Su X, Lu L et al (2016) A novel approach to enhance biological nutrient removal using a culture supernatant from Micrococcus luteus containing resuscitation-promoting factor (Rpf) in SBR process. Environ Sci Pollut Res 23:4498–4508. https://doi.org/10.1007/s11356-015-5603-3
Locey KJ, Lennon JT (2016) Scaling laws predict global microbial diversity. Proc Natl Acad Sci USA 113:5970–5975. https://doi.org/10.1073/pnas.1521291113
Locey KJ, Fisk MC, Lennon JT (2017) Microscale insight into microbial seed banks. Front Microbiol 7:2040. https://doi.org/10.3389/fmicb.2016.02040
Loviso CL, Lozada M, Guibert LM et al (2015) Metagenomics reveals the high polycyclic aromatic hydrocarbon-degradation potential of abundant uncultured bacteria from chronically polluted subantarctic and temperate coastal marine environments. J Appl Microbiol 119:411–424. https://doi.org/10.1111/jam.12843
Martin F, Malagnoux L, Violet F et al (2013) Diversity and catalytic potential of PAH-specific ring-hydroxylating dioxygenases from a hydrocarbon-contaminated soil. Appl Microbiol Biotechnol 97:5125–5135. https://doi.org/10.1007/s00253-012-4335-2
Marzorati M, Wittebolle L, Boon N et al (2008) How to get more out of molecular fingerprints: practical tools for microbial ecology. Environ Microbiol 10:1571–1581. https://doi.org/10.1111/j.1462-2920.2008.01572.x
Megharaj M, Ramakrishnan B, Venkateswarlu K et al (2011) Bioremediation approaches for organic pollutants: a critical perspective. Environ Int 37:1362–1375. https://doi.org/10.1016/j.envint.2011.06.003
Morris JJ, Lenski RE, Zinser ER (2012) The Black Queen Hypothesis: evolution of dependencies through adaptive gene loss. MBio 3:e00036-12. https://doi.org/10.1128/mBio.00036-12
Mukamolova GV, Yanopolskaya ND, Kell DB, Kaprelyants AS (1998a) On resuscitation from the dormant state of Micrococcus luteus. Antonie Van Leeuwenhoek 73:237–243. https://doi.org/10.1023/A:1000881918216
Mukamolova GV, Kaprelyants AS, Young DI et al (1998b) A bacterial cytokine. Proc Natl Acad Sci 95:8916–8921. https://doi.org/10.1073/pnas.95.15.8916
Mukamolova GV, Turapov OA, Kazarian K et al (2002) The rpf gene of Micrococcus luteus encodes an essential secreted growth factor. Mol Microbiol 46:611–621. https://doi.org/10.1046/j.1365-2958.2002.03183.x
Mukamolova GV, Murzin AG, Salina EG et al (2006) Muralytic activity of Micrococcus luteus Rpf and its relationship to physiological activity in promoting bacterial growth and resuscitation. Mol Microbiol 59:84–98. https://doi.org/10.1111/j.1365-2958.2005.04930.x
Murugan K, Vasudevan N (2018) Intracellular toxicity exerted by PCBs and role of VBNC bacterial strains in biodegradation. Ecotoxicol Environ Saf 157:40–60. https://doi.org/10.1016/J.ECOENV.2018.03.014
Musumeci MA, Loviso CL, Lozada M et al (2019) Substrate specificities of aromatic ring-hydroxylating oxygenases of an uncultured gammaproteobacterium from chronically-polluted subantarctic sediments. Int Biodeterior Biodegrad 137:127–136. https://doi.org/10.1016/J.IBIOD.2018.12.005
Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726. https://doi.org/10.1074/JBC.270.45.26723
Nichols D, Cahoon N, Trakhtenberg EM, et al (2010) Use of ichip for high-throughput in situ cultivation of “uncultivable” microbial species. Appl Environ Microbiol 76:2445–2450. https://doi.org/10.1128/AEM.01754-09
Nikitushkin VD, Demina GR, Shleeva MO et al (2015) A product of RpfB and RipA joint enzymatic action promotes the resuscitation of dormant mycobacteria. FEBS J 282:2500–2511. https://doi.org/10.1111/febs.13292
Nikitushkin VD, Demina GR, Kaprelyants AS (2016) Rpf proteins are the factors of reactivation of the dormant forms of actinobacteria. Biochemistry 81:1719–1734. https://doi.org/10.1134/S0006297916130095
Oliver JD (1993) Formation of viable but nonculturable cells. In: Kjelleberg S (ed) Starvation in bacteria. Springer, Boston, MA
Oliver J (2000) The viable but nonculturable state and cellular resuscitation. In: Bell CR, Brylinsky M, Johnson-Green P (eds) Microbial systems: new frontiers. Atlantic Canada Society for Microbial Ecology, Halifax, pp 723–730
Oliver JD (2005) The viable but nonculturable state in bacteria. J Microbiol 43:93–100
Oliver JD (2010) Recent findings on the viable but nonculturable state in pathogenic bacteria. FEMS Microbiol Rev 34:415–425. https://doi.org/10.1111/j.1574-6976.2009.00200.x
Oliver JD (2016) The viable but nonculturable state in bacteria. Status update. This dormant form of bacteria was first appreciated in 1982; now skeptics recognize this state as a bacterial response to stress and a strategy for survival. J Microbiol 43:93–100
Oliver JD, Dagher M, Linden K (2005) Induction of Escherichia coli and Salmonella typhimurium into the viable but nonculturable state following chlorination of wastewater. J Water Health 3:249–257
Overmann J, Abt B, Sikorski J (2017) Present and future of culturing bacteria. Annu Rev Microbiol 71:711–730. https://doi.org/10.1146/annurev-micro-090816-093449
Paidhungat M, Setlow P (2000) Role of ger proteins in nutrient and nonnutrient triggering of spore germination in Bacillus subtilis. J Bacteriol 182:2513–2519. https://doi.org/10.1128/JB.182.9.2513-2519.2000
Pande S, Kost C (2017) Special issue: from one to many bacterial unculturability and the formation of intercellular metabolic networks. Trends Microbiol. https://doi.org/10.1016/j.tim.2017.02.015
Panutdaporn N, Kawamoto K, Asakura H, Makino S-I (2006) Resuscitation of the viable but non-culturable state of Salmonella enterica serovar Oranienburg by recombinant resuscitation-promoting factor derived from Salmonella typhimurium strain LT2. Int J Food Microbiol 106:241–247. https://doi.org/10.1016/j.ijfoodmicro.2005.06.022
Pedrós-Alió C, Manrubia S (2016) The vast unknown microbial biosphere. Proc Natl Acad Sci USA 113:6585–6587. https://doi.org/10.1073/pnas.1606105113
Perei K, Rákhely G, Kiss I et al (2001) Biodegradation of sulfanilic acid by Pseudomonas paucimobilis. Appl Microbiol Biotechnol 55:101–107. https://doi.org/10.1007/s002530000474
Pham VHT, Kim J (2012) Cultivation of unculturable soil bacteria. Trends Biotechnol 30:475–484. https://doi.org/10.1016/j.tibtech.2012.05.007
Pinto D, Almeida V, Almeida Santos M, Chambel L (2011) Resuscitation of Escherichia coli VBNC cells depends on a variety of environmental or chemical stimuli. J Appl Microbiol 110:1601–1611. https://doi.org/10.1111/j.1365-2672.2011.05016.x
Pinto D, Santos MA, Chambel L (2015) Thirty years of viable but nonculturable state research: unsolved molecular mechanisms. Crit Rev Microbiol 41:61–76. https://doi.org/10.3109/1040841X.2013.794127
Piqueres P, Moreno Y, Alonso JL, Ferrús MA (2006) A combination of direct viable count and fluorescent in situ hybridization for estimating Helicobacter pylori cell viability. Res Microbiol 157:345–349. https://doi.org/10.1016/j.resmic.2005.09.003
Poindexter JS (1981) Oligotrophy: feast and famine existence. In: Alexander M (ed) Advances in microbial ecology. Plenum Press, New York, pp 63–89
Ramamurthy T, Ghosh A, Pazhani GP, Shinoda S (2014) Current perspectives on viable but non-culturable (VBNC) pathogenic bacteria. Front Public Heal 2:1–9. https://doi.org/10.3389/fpubh.2014.00103
Rappé MS, Giovannoni SJ (2003) The uncultured microbial majority. Annu Rev Microbiol 57:369–394. https://doi.org/10.1146/annurev.micro.57.030502.090759
Rappé MS, Connon SA, Vergin KL, Giovannoni SJ (2002) Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature 418(6898):630–633. https://doi.org/10.1038/nature00917
Rayu S, Karpouzas DG, Singh BK (2012) Emerging technologies in bioremediation: constraints and opportunities. Biodegradation 23:917–926. https://doi.org/10.1007/s10532-012-9576-3
Riesenfeld CS, Schloss PD, Handelsman J (2004) Metagenomics: genomic analysis of microbial communities. Annu Rev Genet 38:525–552. https://doi.org/10.1146/annurev.genet.38.072902.091216
Roszak DB, Grimes DJ, Colwell RR (1984) Viable but nonrecoverable stage of Salmonella enteritidis in aquatic systems. Can J Microbiol 30:334–338. https://doi.org/10.1139/m84-049
Ruggiero A, Squeglia F, Romano M et al (2016) The structure of Resuscitation promoting factor B from M. tuberculosis reveals unexpected ubiquitin-like domains. Biochim Biophys Acta Gen Subj 1860:445–451. https://doi.org/10.1016/j.bbagen.2015.11.001
Rutherford ST, Bassler BL (2012) Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med 2:a012427. https://doi.org/10.1101/cshperspect.a012427
Saha M, Sarkar S, Sarkar B et al (2016) Microbial siderophores and their potential applications: a review. Environ Sci Pollut Res 23:3984–3999. https://doi.org/10.1007/s11356-015-4294-0
Salam LB, Ilori MO, Amund OO et al (2017) Characterization of bacterial community structure in a hydrocarbon-contaminated tropical African soil. Environ Technol. https://doi.org/10.1080/09593330.2017.1317838
Salma M, Rousseaux S, Sequeira-Le Grand A et al (2013) Characterization of the viable but nonculturable (VBNC) state in Saccharomyces cerevisiae. PLoS ONE 8:e77600. https://doi.org/10.1371/journal.pone.0077600
Schloss PD, Handelsman J (2003) Biotechnological prospects from metagenomics. Curr Opin Biotechnol 14:303–310. https://doi.org/10.1016/S0958-1669(03)00067-3
Schmidt TM, Konopka AE (2009) Physiological and ecological adaptations of slow-growing, heterotrophic microbes and consequences for cultivation. Springer, Berlin, pp 257–276
Scullion J (2006) Remediating polluted soils. Naturwissenschaften 93:51–65. https://doi.org/10.1007/s00114-005-0079-5
Serpaggi V, Remize F, Recorbet G et al (2012) Characterization of the “viable but nonculturable” (VBNC) state in the wine spoilage yeast Brettanomyces. Food Microbiol 30:438–447. https://doi.org/10.1016/j.fm.2011.12.020
Shi X, Xie Y, Zhou X (2017) Food-borne Pathogenic Bacteria. In: Jen JJS, Chen J (eds) Food safety in China: science, technology, management and regulation. Wiley, New Jersey, pp 65–82
Shleeva MO, Bagramyan K, Telkov MV et al (2002) Formation and resuscitation of “non-culturable” cells of Rhodococcus rhodochrous and Mycobacterium tuberculosis in prolonged stationary phase. Microbiology 148:1581–1591. https://doi.org/10.1099/00221287-148-5-1581
Shoemaker WR, Lennon JT (2018) Evolution with a seed bank: the population genetic consequences of microbial dormancy. Evol Appl 11:60–75. https://doi.org/10.1111/eva.12557
Singleton DR, Hu J, Aitken MD (2012) Heterologous expression of polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenase genes from a novel pyrene-degrading betaproteobacterium. Appl Environ Microbiol 78:3552–3559. https://doi.org/10.1128/AEM.00173-12
Smets W, Leff JW, Bradford MA et al (2016) A method for simultaneous measurement of soil bacterial abundances and community composition via 16S rRNA gene sequencing. Soil Biol Biochem 96:145–151. https://doi.org/10.1016/j.soilbio.2016.02.003
Sperandio V, Torres AG, Jarvis B et al (2003) Bacteria-host communication: the language of hormones. Proc Natl Acad Sci USA 100:8951–8956. https://doi.org/10.1073/pnas.1537100100
Sturm A, Dworkin J (2015) Phenotypic diversity as a mechanism to exit cellular dormancy. Curr Biol 25:2272–2277. https://doi.org/10.1016/j.cub.2015.07.018
Su X, Shen X, Ding L, Yokota A (2012) Study on the flocculability of the Arthrobacter sp., an actinomycete resuscitated from the VBNC state. World J Microbiol Biotechnol 28:91–97. https://doi.org/10.1007/s11274-011-0795-2
Su X, Chen X, Hu J et al (2013a) Exploring the potential environmental functions of viable but non-culturable bacteria. World J Microbiol Biotechnol 29:2213–2218. https://doi.org/10.1007/s11274-013-1390-5
Su X, Shen H, Yao X et al (2013b) A novel approach to stimulate the biphenyl-degrading potential of bacterial community from PCBs-contaminated soil of e-waste recycling sites. Bioresour Technol 146:27–34. https://doi.org/10.1016/j.biortech.2013.07.028
Su X, Liu Y, Hu J et al (2014) Optimization of protein production by Micrococcus luteus for exploring pollutant-degrading uncultured bacteria. Springerplus 3:117. https://doi.org/10.1186/2193-1801-3-117
Su X, Liu Y, Hashmi MZ et al (2015a) Rhodococcus biphenylivorans sp. nov., a polychlorinated biphenyl-degrading bacterium. Antonie van Leeuwenhoek Int J Gen Mol Microbiol 107:55–63. https://doi.org/10.1007/s10482-014-0303-4
Su X, Sun F, Wang Y et al (2015b) Identification, characterization and molecular analysis of the viable but nonculturable Rhodococcus biphenylivorans. Sci Rep 5:18590. https://doi.org/10.1038/srep18590
Su X, Zhang Q, Hu J et al (2015c) Enhanced degradation of biphenyl from PCB-contaminated sediments: the impact of extracellular organic matter from Micrococcus luteus. Appl Microbiol Biotechnol 99:1989–2000. https://doi.org/10.1007/s00253-014-6108-6
Su XM, Liu YD, Hashmi MZ et al (2015d) Culture-dependent and culture-independent characterization of potentially functional biphenyl-degrading bacterial community in response to extracellular organic matter from Micrococcus luteus. Microb Biotechnol 8:569–578. https://doi.org/10.1111/1751-7915.12266
Su X, Guo L, Ding L et al (2016) Induction of viable but nonculturable state in Rhodococcus and transcriptome analysis using RNA-seq. PLoS ONE 11:e0147593. https://doi.org/10.1371/journal.pone.0147593
Su X, Wang Y, Xue B et al (2018a) Resuscitation of functional bacterial community for enhancing biodegradation of phenol under high salinity conditions based on Rpf. Bioresour Technol 261:394–402. https://doi.org/10.1016/J.BIORTECH.2018.04.048
Su X, Zhang S, Mei R et al (2018b) Resuscitation of viable but non-culturable bacteria to enhance the cellulose-degrading capability of bacterial community in composting. Microb Biotechnol 11:527–536. https://doi.org/10.1111/1751-7915.13256
Su XM, Bamba AM, Zhang S et al (2018c) Revealing potential functions of VBNC bacteria in polycyclic aromatic hydrocarbons biodegradation. Lett Appl Microbiol 66:277–283. https://doi.org/10.1111/lam.12853
Su X, Li S, Cai J et al (2019a) Aerobic degradation of 3,3′,4,4′-tetrachlorobiphenyl by a resuscitated strain Castellaniella sp. SPC4: kinetics model and pathway for biodegradation. Sci Total Environ 688:917–925. https://doi.org/10.1016/J.SCITOTENV.2019.06.364
Su X, Wang Y, Xue B et al (2019b) Impact of resuscitation promoting factor (Rpf) in membrane bioreactor treating high-saline phenolic wastewater: performance robustness and Rpf-responsive bacterial populations. Chem Eng J 357:715–723. https://doi.org/10.1016/J.CEJ.2018.09.197
Su X, Xue B, Wang Y et al (2019c) Bacterial community shifts evaluation in the sediments of Puyang River and its nitrogen removal capabilities exploration by resuscitation promoting factor. Ecotoxicol Environ Saf 179:188–197. https://doi.org/10.1016/J.ECOENV.2019.04.067
Telkov MV, Demina GR, Voloshin SA et al (2006) Proteins of the Rpf (resuscitation promoting factor) family are peptidoglycan hydrolases. Biochemistry 71:414–422. https://doi.org/10.1134/S0006297906040092
Traxler MF, Seyedsayamdost MR, Clardy J, Kolter R (2012) Interspecies modulation of bacterial development through iron competition and siderophore piracy. Mol Microbiol 86:628–644. https://doi.org/10.1111/mmi.12008
Tripathi V, Edrisi SA, Chen B et al (2017) Biotechnological advances for restoring degraded land for sustainable development land restoration for regaining essential ecosystem services. Trends Biotechnol. https://doi.org/10.1016/j.tibtech.2017.05.001
Tyagi M, da Fonseca MMR, de Carvalho CCCR (2011) Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation 22:231–241. https://doi.org/10.1007/s10532-010-9394-4
van Vliet S (2015) Bacterial dormancy: how to decide when to wake up. Curr Biol 25:R753–R755. https://doi.org/10.1016/j.cub.2015.07.039
Villas-Bôas SG, Bruheim P (2007) The potential of metabolomics tools in bioremediation studies. Omi A J Integr Biol 11:305–313. https://doi.org/10.1089/omi.2007.0005
Wandersman C, Delepelaire P (2004) Bacterial iron sources: from siderophores to hemophores. Annu Rev Microbiol 58:611–647. https://doi.org/10.1146/annurev.micro.58.030603.123811
Waters CM, Bassler BL (2006) The Vibrio harveyi quorum-sensing system uses shared regulatory components to discriminate between multiple autoinducers. Genes Dev 20:2754–2767. https://doi.org/10.1101/gad.1466506
Wilson MC, Piel J (2013) Metagenomic approaches for exploiting uncultivated bacteria as a resource for novel biosynthetic enzymology. Chem Biol 20:636–647. https://doi.org/10.1016/j.chembiol.2013.04.011
Xiong M, Hu Z, Zhang Y et al (2013) Survival of GFP-tagged Rhodococcus sp. D310-1 in chlorimuron-ethyl-contaminated soil and its effects on the indigenous microbial community. J Hazard Mater 252–253:347–354. https://doi.org/10.1016/j.jhazmat.2013.02.054
Xu Y, Vetsigian K (2017) Phenotypic variability and community interactions of germinating Streptomyces spores. Sci Rep 7:1–13
Xu H-S, Roberts N, Singleton FL et al (1982) Survival and viability of nonculturableEscherichia coli andVibrio cholerae in the estuarine and marine environment. Microb Ecol 8:313–323. https://doi.org/10.1007/BF02010671
Yu XY, Zhang L, Ren B et al (2015) Arthrobacter liuii sp. nov., resuscitated from Xinjiang desert soil. Int J Syst Evol Microbiol 65:896–901. https://doi.org/10.1099/ijs.0.000037
Zengler K, Toledo G, Rappe M, et al (2002) Cultivating the uncultured. Proc Natl Acad Sci U S A 99:15681–15686. https://doi.org/10.1073/pnas.252630999
Zhang X, Nesme J, Simonet P, Frostegård Å (2012) Fate of invading bacteria in soil and survival of transformants after simulated uptake of transgenes, as evaluated by a model system based on lindane degradation. Res Microbiol 163:200–210. https://doi.org/10.1016/j.resmic.2012.01.007
Zhang D, Berry JP, Zhu D, et al (2015) Magnetic nanoparticle-mediated isolation of functional bacteria in a complex microbial community. ISME J 9:603–614. https://doi.org/10.1038/ismej.2014.161
Zhao S, Song X, Zhao Y et al (2015) Protective and therapeutic effects of the resuscitation-promoting factor domain and its mutants against Mycobacterium tuberculosis in mice. Pathog Dis 73:e31908. https://doi.org/10.1093/femspd/ftu025
Zhao H, Zhang Y, Xiao X et al (2017a) Different phenanthrene-degrading bacteria cultured by in situ soil substrate membrane system and traditional cultivation. Int Biodeterior Biodegrad 117:269–277. https://doi.org/10.1016/j.ibiod.2016.12.016
Zhao X, Zhong J, Wei C et al (2017b) Current perspectives on viable but non-culturable state in foodborne pathogens. Front Microbiol. https://doi.org/10.3389/fmicb.2017.00580
Zou Y, Fu H, Chen Y et al (2014) Viable but non-culturable bacteria in bioreactor-based pharmaceutical wastewater. Agric Sci Technol 15:1299–1303