Challenges of recycling multiple scarce metals: The case of Swedish ELV and WEEE recycling
Tài liệu tham khảo
Andersson, 2017, Are scarce metals in cars functionally recycled?, Waste Manag., 60, 407, 10.1016/j.wasman.2016.06.031
Andersson, 2017, Lessons from a century of innovating car recycling value chains, Environ. Innovat. Soc. Transit., 25, 142, 10.1016/j.eist.2017.03.001
Andersson, 2019, Adoption of systemic and socio-technical perspectives in waste management, WEEE and ELV research, Sustainability, 11, 1677, 10.3390/su11061677
Arthur, 1988, Competing technologies: an overview, 590
Arthur, 2009
Awasthi, 2019, Circular economy and electronic waste, Nat. Electron., 2, 86, 10.1038/s41928-019-0225-2
Benson, 2017
Bergek, 2008, Analyzing the functional dynamics of technological innovation systems: a scheme of analysis, Res. Pol., 37, 407, 10.1016/j.respol.2007.12.003
Bergek, 2008, 'Legitimation' and 'development of positive externalities': two key processes in the formation phase of technological innovation systems, Technol. Anal. Strat. Manag., 20, 575, 10.1080/09537320802292768
Bigum, 2012, Metal recovery from high-grade WEEE: a life cycle assessment, J. Hazard Mater., 207–208, 8, 10.1016/j.jhazmat.2011.10.001
Boliden, 2012
Boliden, 2014
Boliden, 2014
Boliden, 2015
Boliden, 2016
Boliden, 2016
Boliden, 2017
Carlsson, 1991, On the nature, function and composition of technological systems, J. Evol. Econ., 1, 93, 10.1007/BF01224915
Cullbrand, 2012
David, 1985, Clio and the economics of qwerty, Am. Econ. Rev., 75, 332
Dosi, 1982, Technological paradigms and technological trajectories: a suggested interpretation of the determinants and directions of technical change, Res. Pol., 11, 147, 10.1016/0048-7333(82)90016-6
Edwards, 2004, Strategic substitution of new materials for old: applications in automotive product development, Mater. Des., 25, 529, 10.1016/j.matdes.2003.12.008
Eklund, 2013
El-kretsen, 2016
El-kretsen, 2018
European Commission, 2010
European Commission, 2014
European Commission, 2017
European Commission, 2017
European Commission, 2018
European Parliament and Council, 2000
European Parliament and Council, 2012
Eurostat, 2018
Geological Survey of Sweden, 2014
Geological Survey of Sweden, 2018
Graedel, 2018, Grand challenges in metal life cycles, Nat. Resour. Res., 27, 181, 10.1007/s11053-017-9333-8
Graedel, 2011, What do we know about metal recycling rates?, J. Ind. Ecol., 15, 355, 10.1111/j.1530-9290.2011.00342.x
Haley, 2015, Low-carbon innovation from a hydroelectric base: the case of electric vehicles in Québec, Environ. Innovat. Soc. Transit., 14, 5, 10.1016/j.eist.2014.05.003
Heed, 2017
Hekkert, 2007, Functions of innovation systems: a new approach for analysing technological change, Technol. Forecast. Soc. Change, 74, 413, 10.1016/j.techfore.2006.03.002
Hillman, 2008, Exploring technology paths: the development of alternative transport fuels in Sweden 2007-2020, Technol. Forecast. Soc. Change, 75, 1279, 10.1016/j.techfore.2008.01.003
Hjelmstedt, 2017
Holgersson, 2018, Analysis of the metal content of small-size Waste Electric and Electronic Equipment (WEEE) printed circuit boards—part 1: internet routers, mobile phones and smartphones, Resour. Conserv. Recycl., 133, 300, 10.1016/j.resconrec.2017.02.011
Huisman, 2017
IVL Swedish Environmental Research Institute, 2015
IVL Swedish Environmental Research Institute, 2015
IVL Swedish Environmental Research Institute, 2015
Jacobsson, 2004, Transforming the energy sector: the evolution of technological systems in renewable energy technology, Ind. Corp. Chang., 13, 815, 10.1093/icc/dth032
Jacobsson, 2004, Transforming the energy system-the evolution of the German technological system for solar cells, Technol. Anal. Strat. Manag., 16, 3, 10.1080/0953732032000199061
Jensen, 2012
Katz, 2018, Natural resource based growth, global value chains and domestic capabilities in the mining industry, Res. Pol., 58, 11, 10.1016/j.resourpol.2018.02.001
Lall, 1992, Technological capabilities and industrialization, World Dev., 20, 165, 10.1016/0305-750X(92)90097-F
Lehner, 2005, Hantering av uttjänta TV-apparater
Løvik, 2018, Improving supply security of critical metals: current developments and research in the EU, Sustain. Mater. Technol., 15, 9
Markard, 2012, Sustainability transitions: an emerging field of research and its prospects, Res. Pol., 41, 955, 10.1016/j.respol.2012.02.013
Mårtensson, 2015
Nakajima, 2011, Thermodynamic analysis for the controllability of elements in the recycling process of metals, Environ. Sci. Technol., 45, 4929, 10.1021/es104231n
Nakamura, 2012, Quality- and dilution losses in the recycling of ferrous materials from end-of-life passenger cars: input-output analysis under explicit consideration of scrap quality, Environ. Sci. Technol., 46, 9266, 10.1021/es3013529
Ohno, 2014, Unintentional flow of alloying elements in steel during recycling of end-of-life vehicles, J. Ind. Ecol., 18, 242, 10.1111/jiec.12095
Oy, 2014
Oy, 2015
Oy, 2016
Parker, 2018, How the globalisation and financialisation of mining Majors affects linkage development with local engineering and technology suppliers in the Queensland resources industry, Resour. Pol., 58, 125, 10.1016/j.resourpol.2018.04.002
ProSUM project, 2018
Reck, 2012, Challenges in metal recycling, Science, 337, 690, 10.1126/science.1217501
Restrepo, 2017, Stocks, flows, and distribution of critical metals in embedded electronics in passenger vehicles, Environ. Sci. Technol., 51, 1129, 10.1021/acs.est.6b05743
Reuter, 2006, Fundamental limits for the recycling of end-of-life vehicles, Miner. Eng., 19, 433, 10.1016/j.mineng.2005.08.014
Sandén, 2011, A framework for analysis of multi-mode interaction among technologies with examples from the history of alternative transport fuels in Sweden, Res. Pol., 40, 403, 10.1016/j.respol.2010.12.005
Sarasini, 2017, Integrating a business model perspective into transition theory: the example of new mobility services
SBR, 2011
Schweitz, 2017
Sjölin, 2017
Skinner, 1979, Earth resources, Proc. Natl. Acad. Sci. Unit. States Am., 76, 4212, 10.1073/pnas.76.9.4212
Stena Metall Group, 2015
Stena Metall Group, 2016
Stena Metall Group, 2017
Sterman, 2001, System dynamics modeling: tools for learning in a complex world, Calif. Manag. Rev., 43, 8, 10.2307/41166098
Suurs, 2009, Cumulative causation in the formation of a technological innovation system: the case of biofuels in The Netherlands, Technol. Forecast. Soc. Change, 76, 1003, 10.1016/j.techfore.2009.03.002
Swedish EPA, 2012
Swedish EPA, 2017
Swedish EPA, 2017
Swedish EPA, 2017
Swedish Foundation for Strategic Environmental Research Mistra, 2018
Swedish Ministry of Environment and Energy, 2014
Swedish Ministry of Environment and Energy, 2016
Swedish Ministry of Environment and Energy, 2017
Swedish Ministry of Environment and Energy, 2018, Bilskrotningsförordning, 186
The Swedish Agency for Growth Policy Analysis, 2017
UNEP, 2013
U.S. Geological Survey, 2013
Van Den Bergh, 2011, Environmental innovation and societal transitions: introduction and overview, Environ. Innovat. Soc. Transit., 1, 1, 10.1016/j.eist.2011.04.010
World Bank Group, 2017
Xue-hong, 2018, Evaluation of the alternative effects of the indium resource tax on tariffs: an endogenous perspective, Resour. Pol., 57, 156, 10.1016/j.resourpol.2018.02.015
Zeng, 2016, Uncovering the recycling potential of “new” WEEE in China, Environ. Sci. Technol., 50, 1347, 10.1021/acs.est.5b05446
Zott, 2011, The business model: recent developments and future research, J. Manag., 37, 1019