Challenges of recycling multiple scarce metals: The case of Swedish ELV and WEEE recycling

Resources Policy - Tập 63 - Trang 101403 - 2019
Magnus Andersson1, Maria Ljunggren Söderman1, Björn A. Sandén1
1Division of Environmental Systems Analysis, Department of Technology Management and Economics, Chalmers University of Technology, SE-41296, Gothenburg, Sweden

Tài liệu tham khảo

Andersson, 2017, Are scarce metals in cars functionally recycled?, Waste Manag., 60, 407, 10.1016/j.wasman.2016.06.031 Andersson, 2017, Lessons from a century of innovating car recycling value chains, Environ. Innovat. Soc. Transit., 25, 142, 10.1016/j.eist.2017.03.001 Andersson, 2019, Adoption of systemic and socio-technical perspectives in waste management, WEEE and ELV research, Sustainability, 11, 1677, 10.3390/su11061677 Arthur, 1988, Competing technologies: an overview, 590 Arthur, 2009 Awasthi, 2019, Circular economy and electronic waste, Nat. Electron., 2, 86, 10.1038/s41928-019-0225-2 Benson, 2017 Bergek, 2008, Analyzing the functional dynamics of technological innovation systems: a scheme of analysis, Res. Pol., 37, 407, 10.1016/j.respol.2007.12.003 Bergek, 2008, 'Legitimation' and 'development of positive externalities': two key processes in the formation phase of technological innovation systems, Technol. Anal. Strat. Manag., 20, 575, 10.1080/09537320802292768 Bigum, 2012, Metal recovery from high-grade WEEE: a life cycle assessment, J. Hazard Mater., 207–208, 8, 10.1016/j.jhazmat.2011.10.001 Boliden, 2012 Boliden, 2014 Boliden, 2014 Boliden, 2015 Boliden, 2016 Boliden, 2016 Boliden, 2017 Carlsson, 1991, On the nature, function and composition of technological systems, J. Evol. Econ., 1, 93, 10.1007/BF01224915 Cullbrand, 2012 David, 1985, Clio and the economics of qwerty, Am. Econ. Rev., 75, 332 Dosi, 1982, Technological paradigms and technological trajectories: a suggested interpretation of the determinants and directions of technical change, Res. Pol., 11, 147, 10.1016/0048-7333(82)90016-6 Edwards, 2004, Strategic substitution of new materials for old: applications in automotive product development, Mater. Des., 25, 529, 10.1016/j.matdes.2003.12.008 Eklund, 2013 El-kretsen, 2016 El-kretsen, 2018 European Commission, 2010 European Commission, 2014 European Commission, 2017 European Commission, 2017 European Commission, 2018 European Parliament and Council, 2000 European Parliament and Council, 2012 Eurostat, 2018 Geological Survey of Sweden, 2014 Geological Survey of Sweden, 2018 Graedel, 2018, Grand challenges in metal life cycles, Nat. Resour. Res., 27, 181, 10.1007/s11053-017-9333-8 Graedel, 2011, What do we know about metal recycling rates?, J. Ind. Ecol., 15, 355, 10.1111/j.1530-9290.2011.00342.x Haley, 2015, Low-carbon innovation from a hydroelectric base: the case of electric vehicles in Québec, Environ. Innovat. Soc. Transit., 14, 5, 10.1016/j.eist.2014.05.003 Heed, 2017 Hekkert, 2007, Functions of innovation systems: a new approach for analysing technological change, Technol. Forecast. Soc. Change, 74, 413, 10.1016/j.techfore.2006.03.002 Hillman, 2008, Exploring technology paths: the development of alternative transport fuels in Sweden 2007-2020, Technol. Forecast. Soc. Change, 75, 1279, 10.1016/j.techfore.2008.01.003 Hjelmstedt, 2017 Holgersson, 2018, Analysis of the metal content of small-size Waste Electric and Electronic Equipment (WEEE) printed circuit boards—part 1: internet routers, mobile phones and smartphones, Resour. Conserv. Recycl., 133, 300, 10.1016/j.resconrec.2017.02.011 Huisman, 2017 IVL Swedish Environmental Research Institute, 2015 IVL Swedish Environmental Research Institute, 2015 IVL Swedish Environmental Research Institute, 2015 Jacobsson, 2004, Transforming the energy sector: the evolution of technological systems in renewable energy technology, Ind. Corp. Chang., 13, 815, 10.1093/icc/dth032 Jacobsson, 2004, Transforming the energy system-the evolution of the German technological system for solar cells, Technol. Anal. Strat. Manag., 16, 3, 10.1080/0953732032000199061 Jensen, 2012 Katz, 2018, Natural resource based growth, global value chains and domestic capabilities in the mining industry, Res. Pol., 58, 11, 10.1016/j.resourpol.2018.02.001 Lall, 1992, Technological capabilities and industrialization, World Dev., 20, 165, 10.1016/0305-750X(92)90097-F Lehner, 2005, Hantering av uttjänta TV-apparater Løvik, 2018, Improving supply security of critical metals: current developments and research in the EU, Sustain. Mater. Technol., 15, 9 Markard, 2012, Sustainability transitions: an emerging field of research and its prospects, Res. Pol., 41, 955, 10.1016/j.respol.2012.02.013 Mårtensson, 2015 Nakajima, 2011, Thermodynamic analysis for the controllability of elements in the recycling process of metals, Environ. Sci. Technol., 45, 4929, 10.1021/es104231n Nakamura, 2012, Quality- and dilution losses in the recycling of ferrous materials from end-of-life passenger cars: input-output analysis under explicit consideration of scrap quality, Environ. Sci. Technol., 46, 9266, 10.1021/es3013529 Ohno, 2014, Unintentional flow of alloying elements in steel during recycling of end-of-life vehicles, J. Ind. Ecol., 18, 242, 10.1111/jiec.12095 Oy, 2014 Oy, 2015 Oy, 2016 Parker, 2018, How the globalisation and financialisation of mining Majors affects linkage development with local engineering and technology suppliers in the Queensland resources industry, Resour. Pol., 58, 125, 10.1016/j.resourpol.2018.04.002 ProSUM project, 2018 Reck, 2012, Challenges in metal recycling, Science, 337, 690, 10.1126/science.1217501 Restrepo, 2017, Stocks, flows, and distribution of critical metals in embedded electronics in passenger vehicles, Environ. Sci. Technol., 51, 1129, 10.1021/acs.est.6b05743 Reuter, 2006, Fundamental limits for the recycling of end-of-life vehicles, Miner. Eng., 19, 433, 10.1016/j.mineng.2005.08.014 Sandén, 2011, A framework for analysis of multi-mode interaction among technologies with examples from the history of alternative transport fuels in Sweden, Res. Pol., 40, 403, 10.1016/j.respol.2010.12.005 Sarasini, 2017, Integrating a business model perspective into transition theory: the example of new mobility services SBR, 2011 Schweitz, 2017 Sjölin, 2017 Skinner, 1979, Earth resources, Proc. Natl. Acad. Sci. Unit. States Am., 76, 4212, 10.1073/pnas.76.9.4212 Stena Metall Group, 2015 Stena Metall Group, 2016 Stena Metall Group, 2017 Sterman, 2001, System dynamics modeling: tools for learning in a complex world, Calif. Manag. Rev., 43, 8, 10.2307/41166098 Suurs, 2009, Cumulative causation in the formation of a technological innovation system: the case of biofuels in The Netherlands, Technol. Forecast. Soc. Change, 76, 1003, 10.1016/j.techfore.2009.03.002 Swedish EPA, 2012 Swedish EPA, 2017 Swedish EPA, 2017 Swedish EPA, 2017 Swedish Foundation for Strategic Environmental Research Mistra, 2018 Swedish Ministry of Environment and Energy, 2014 Swedish Ministry of Environment and Energy, 2016 Swedish Ministry of Environment and Energy, 2017 Swedish Ministry of Environment and Energy, 2018, Bilskrotningsförordning, 186 The Swedish Agency for Growth Policy Analysis, 2017 UNEP, 2013 U.S. Geological Survey, 2013 Van Den Bergh, 2011, Environmental innovation and societal transitions: introduction and overview, Environ. Innovat. Soc. Transit., 1, 1, 10.1016/j.eist.2011.04.010 World Bank Group, 2017 Xue-hong, 2018, Evaluation of the alternative effects of the indium resource tax on tariffs: an endogenous perspective, Resour. Pol., 57, 156, 10.1016/j.resourpol.2018.02.015 Zeng, 2016, Uncovering the recycling potential of “new” WEEE in China, Environ. Sci. Technol., 50, 1347, 10.1021/acs.est.5b05446 Zott, 2011, The business model: recent developments and future research, J. Manag., 37, 1019