Challenges, Ideas, and Innovations of Joined-Wing Configurations: A Concept from the Past, an Opportunity for the Future

Progress in Aerospace Sciences - Tập 87 - Trang 1-93 - 2016
Rauno Cavallaro1, Luciano Demasi2
1Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Spain
2Department of Aerospace Engineering, San Diego State University, United States

Tài liệu tham khảo

Wolkovitch, 1986, The joined wing aircraft, J. Aircr., 23, 161, 10.2514/3.45285 L. Prandtl, Induced Drag of Multiplanes, Technical Report TN 182, NACA, reproduction of Der induzierte Widerstand von Mehrdeckern. Technische Ber. 3, 1918 (March 1924), pp. 309–315 Gallman, 1993, Optimization of joined-wing aircraft, J. Aircr., 30, 897, 10.2514/3.46432 J.W. Gallman, I. Kroo, JWOPT – An Optimization and Analysis Program for Joined Wing and Conventional Aircraft Structures, Technical Report NASA-CR-197018, NASA, January 1988. Gallman, 1996, Structural optimization for joined-wing synthesis, J. Aircr., 33, 214, 10.2514/3.46924 J.W. Gallman, I.M. Kroo, S.C. Smith, Design synthesis and optimization of joined-wing transports, in: AIAA/AHS/ASEE Aircraft Design, Systems and Operations Conference, no. AIAA-90-3197, Dayton, OH, 1990. http://dx.doi.org/10.2514/6.1990–3197. 〈http://arc.aiaa.org/doi/abs/10.2514/6.1990–3197〉. Kroo, 1991, Aerodynamic and structural studies of joined-wing aircraft, J. Aircr., 28, 74, 10.2514/3.45994 D. Lucia, The Sensorcraft configurations: a non-linear aeroservoelastic challenge for aviation, in: 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, no. AIAA 2005-1943, American Institute of Aeronautics and Astronautics, Austin, Texas, 2005 〈http://dx.doi.org/10.2514/6.2005–1943〉. J.R. Chambers, Innovation in Flight: Research of the NASA Langley Research Center on Revolutionary Advanced Concepts for Aeronautics, Monograph in Aerospace History, no. 39, NASA, 2005, SP 2005-4539. P.J. Callus, Conformal Load-bearing Antenna Structure for Australian Defense Force Aircraft, DSTO-TR-1963. C. Tyler, G. Schwabacher, D. Carter, Comparison of computational and experimental studies for a joined-wing aircraft, in: 40th AIAA Aerospace Sciences Meeting & Exhibit, no. AIAA 2002-0702, Reno, Nevada, 2002. http://dx.doi.org/10.2514/6.2002-702 URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2002-702〉. R. Snyder, J. Hur, D. Strong, P. Beran, Aeroelastic analysis of a high-altitude long-endurance joined-wing aircraft, in: 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, no. AIAA 2005-1948, Austin, Texas, 2005 〈http://dx.doi.org/10.2514/6.2005–1948〉 URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2005-1948〉. F.P. Johnson, Sensor craft - tomorrow's eyes and ears of the warfighter, in: AIAA Modeling and Simulation Technologies Conference and Exhibit, no. AIAA 2001-4370, Montreal, Canada, 2001 〈http://dx.doi.org/10.2514/6.2001–4370〉 URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2001-4370〉. J.E. Dittmar, Integrated conceptual design of joined-wing sensorcraft using response surface models (Master's Thesis), Air Force Institute of Technology, Department of Aeronautics and Astronautics, November 2006. M. Blair, D. Moorhouse, T.A. Weisshaar, System design innovation using multidisciplinary optimization and simulation, in: 8th Symposium on Multidisciplinary Analysis and Optimization, no. AIAA-2000-4705, Long Beach, CA, 2000 http://dx.doi.org/10.2514/6.2000–4705 URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2000-4705〉. J.R. Martinez, P. Flick, J. Perdzock, G. Dale, M. Davis, An overview of SensorCraft capabilities and key enabling technologies, in: 26th AIAA Applied Aerodynamics Conference, no. AIAA 2008-7185, Honolulu, Hawaii, 2008. http://dx.doi.org/10.2514/6.2008–7185. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2008–7185〉 E. Reichenbach, M. Castelluccio, B. Sexton, Joined wing SensorCraft aeroservoelastic wind tunnel test program, in: 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, no. AIAA 2011-1956, Denver, Colorado, 2011. http://dx.doi.org/10.2514/6.2011–1956. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2011–1956〉 M. Blair, A.R. Canfield, A joined-wing structural weight modeling study, in: 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, no. AIAA 2002-1337, Denver, Colorado, 2002. http://dx.doi.org/doi:10.2514/6.2002–1337. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2002–1337〉 R. Roberts, R. Canfield, M. Blair, Sensorcraft structural optimization and analytical certification, no. in: 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA 2003-1458, Norfolk, Virginia, 2003. http://dx.doi.org/10.2514/6.2005–2015. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2005–2015〉 R.W. Roberts, Sensor-craft analytical certification (Master's Thesis), Air Force Institute of Technology, March 2003. URL 〈http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA412966〉 J. Schwartz, R. Canfield, M. Blair, Aero-structural coupling and sensitivity of a joined-wing SensorCraft, in: 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, no. AIAA 2003–1580, Norfolk, Virginia, 2003. http://dx.doi.org/10.2514/6.2003–1580. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2003–1580〉 J.J. Sitz, Aeroelastic analysis of a joined-wing SensorCraft (Master's thesis), Air Force Institute of Technology, Department of Aeronautical and Astronautical Engineering, June 2004. URL 〈http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA426635〉 R. Roberts, R. Canfield, M. Blair, Sensor-craft structural optimization and analytical certification, in: 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, no. AIAA 2005-2015, Austin, Texas, 2005. http://dx.doi.org/10.2514/6.2005–2015. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2005–2015〉 C.C. Rasmussen, R.A. Canfield, M. Blair, Optimization process for configuration of flexible joined-wing, in: 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, no. AIAA 2004-4330, Albany, New York, 2004. Rasmussen, 2006, Joined-wing sensor-craft configuration design, J. Aircr., 43, 1470, 10.2514/1.21951 Rasmussen, 2009, Optimization process for configuration of flexible joined-wing, Struct. Multidiscip. Optim., 37, 265, 10.1007/s00158-008-0229-4 C.C. Rasmussen, Optimization process for configuration of flexible joined-wing (Master's thesis), Department of the Air Force Air University, Air Force Institute of Technology, ADA494958, March 2004. URL 〈www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA494958〉 Blair, 2005, Joined-wing aeroelastic design with geometric nonlinearity, J. Aircr., 42, 832, 10.2514/1.2199 J. Hur, P. Beran, L. Huttsell, R. Snyder, B. Soni, H. Thornburg, Parametric mesh deformation and sensitivity analysis for design of a joined-wing aircraft, in: 42nd AIAA Aerospace Sciences Meeting and Exhibit, no. AIAA 2004-116, Reno, Nevada, 2004. http://dx.doi.org/10.2514/6.2004-116. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2004-116〉 H. Lee, Y. Kim, G. Park, R. Kolonay, M. Blair, R. Canfield, Structural optimization of a joined-wing using equivalent static loads, in: 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, no. AIAA 2006-7009, Portsmouth, Virginia, 2006. http://dx.doi.org/10.2514/6.2006–7009. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2006–7009〉 Lee, 2007, Structural optimization of a joined-wing using equivalent static loads, J. Aircr., 44, 1302, 10.2514/1.26869 Y.I. Kim, G.J. Park, R.M. Kolonay, M. Blair, R. A. Canfield, Nonlinear response structural optimization of a joined wing using equivalent loads, AIAA J. 46. (2008) http://dx.doi.org/10.2514/1.33428. Y.-I. Kim, G.-J. Park, R. Kolonay, M. Blair, R. Canfield, Nonlinear dynamic response structural optimization of a joined-wing using equivalent static loads, in: 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 16th AIAA/ASME/AHS Adaptive Structures Conference, no. AIAA 2008-2159, Schaumburg, IL, 2008. http://dx.doi.org/10.2514/6.2008–2159. URL Read More: 〈http://arc.aiaa.org/doi/abs/10.2514/6.2008–2159〉 Kim, 2009, Nonlinear dynamic response structural optimization of a joined-wing using equivalent static loads, J. Aircr., 46, 821, 10.2514/1.36762 C. Cesnik, E. Brown, Active warping control of a joined wing/tail airplane configuration, in: 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, no. AIAA 2003-1715, Norfolk, Virginia, 2003. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2003–1715〉 B. Smallwood, R. Canfield, A. Terzuoli, Structurally integrated antennas on a joined-wing aircraft, in: 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, no. AIAA 2003-1459, 2003. http://dx.doi.org/10.2514/6.2003–1459. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2003–1459〉 B. Smallwood, A. Terzuoli, R. Canfield, Structurally integrated antennas for remote sensing, in: 2003 IEEE International on Geoscience and Remote Sensing Symposium, 2003. IGARSS'03. Proceedings, vol. 7, 2003, pp. 4252–4254. http://dx.doi.org/10.1109/IGARSS.2003.1295479. B.P. Smallwood, Structurally integrated antennas on a joined-wing aircraft (Master's Thesis), Department of the Air Force Air University, Air Force Institute of Technology, March 2003. URL 〈www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA412866〉 G.W. Reich, D. Raveh, P.S. Zink, Application of active aeroelastic wing technology to a joined-wing Sensorcraft, in: 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, no. AIAA-2002-1633, Denver, Colorado, 2002. http://dx.doi.org/10.2514/6.2002–1633. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2002–1633〉 Reich, 2004, Application of active aeroelastic wing technology to a joined-wing Sensorcraft, J. Aircr., 41, 594, 10.2514/1.78 Reich, 2005, Large-area aerodynamic control for high-altitude long- endurance sensor platforms, J. Aircr., 42, 237, 10.2514/1.7146 V.L. Bond, B. Canfield, M. Matos, A. Suleman, M. Blair, Wind tunnel testing of a twisted wing for longitudinal control in a joined-wing aircraft, in: 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, no. AIAA 2007–1772, Honolulu, Hawaii, 2007. http://dx.doi.org/10.2514/6.2007–1772. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2007–1772〉 V. Bond, Flexible twist for pitch control in a high altitude long endurance aircraft with nonlinear response (Ph.D. Thesis), Department of the Air Force, Air Force Institute of Technology, Wright-Patterson AFB, Dayton, OH, 2007. Bond, 2010, Joined-wing wind-tunnel test for longitudinal control via aftwing twist, J. Aircr., 47, 1481, 10.2514/1.41140 F. Kimler, R. Canfield, Structural design of wing twist for pitch control of Joined Wing SensorCraft, in: 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, no. AIAA 2006–7134, Portsmouth, Virginia, 2006. http://dx.doi.org/10.2514/6.2006–7134. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2006–7134〉 R. Nangia, M. Palmer, C. Tilmann, On design of unconventional high aspect ratio joined-wing type aircraft, in: ICASE 2002 Congress, 2002. R. Nangia, M. Palmer, C. Tilmann, Unconventional high aspect ratio joined-wing aircraft with aft-& forward-swept wing-tips, in: 41st AIAA Aerospace Sciences Meeting & Exhibit, no. AIAA-2003-0605, Reno, Nevada, USA, 2003. R. Nangia, M. Palmer, C. Tilmann, Unconventional high aspect ratio joined-wing aircraft incorporating laminar flow, in: 21st AIAA Applied Aerodynamics Meeting & Exhibit, no. AIAA-2003-3927, Orlando, FL, USA, 2003. R. Nangia, M. Palmer, C. Tilmann, Planform variation effects, unconventional high aspect-ratio joined-wing aircraft incorporating laminar-flow, in: 43rd AIAA Aerospace Sciences Meeting and Exhibit, no. AIAA 2005-02432, Reno, Nevada, 2005. http://dx.doi.org/10.2514/6.2005-243. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2005-243〉 R. Nangia, M. Palmer, Joined wing configuration for high speeds – a first stage aerodynamic study, in: 44th AIAA Aerospace Sciences Meeting and Exhibit, no. AIAA 2006-859, Reno, Nevada, 2006. http://dx.doi.org/10.2514/6.2006-859. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2006-859〉 R. Nangia, Pilot Document Introducing all Aspects of Work Accomplished Under USAF-EOARD Contract SPC-024051; High Aspect Ratio Unconventional Joined-wing Configurations Incorporating Laminar Flow; Planform Effects on High Aspect Ratio Unconventional Joined & Lambda-wing Configurations Incorporating Laminar Flow, Technical Report RKN/AERO/REPORT/2004-10, Parts 1, 2, 3, July 2004. R.L. Craft, Drag estimates for the joined-wing Sensor Craft (Master's thesis), Air Force Institute of Technology, Department of Aeronautics and Astronautics, June 2005. R. Sivaji, U. Ghia, K. Ghia, H. Thornburg, Aerodynamic analysis of the joined-wing configuration of a HALE aircraft, no. AIAA 2003-606, 41st Aerospace Sciences Meeting and Exhibit, 2003. R. Sivaji, Aerodynamic analysis of the joined-wing configuration of a high-altitude, long endurance (HALE) aircraft (Master's thesis), Mechanical Engineering, University of Cincinnati, May 2004. URL 〈http://rave.ohiolink.edu/etdc/view?acc_num=ucin1083849791〉 S. Marisarla, V. Narayanan, U. Ghia, K. Ghia, Prediction of structural behavior of joined-wing configuration of high-altitude long-endurance (HALE) aircraft, in: 41st Aerospace Sciences Meeting and Exhibit, no. AIAA 2003-625, Reno, Nevada, AIAA, 2003. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2003-625〉 S. Marisarla, Structural analysis of an equivalent box-wing representation of Sensorcraft joined-wing configuration for HALE aircraft (Master's thesis), Mechanical Engineering, University of Cincinnati, February 2005. URL 〈http://rave.ohiolink.edu/etdc/view?acc_num=ucin1116215297 V. Narayanan, Structural analysis of reinforced shell wing model for joined-wing configuration (Master's thesis), Mechanical Engineering, University of Cincinnati, March 2005. URL 〈http://rave.ohiolink.edu/etdc/view?acc_num=ucin1116214221〉 R. Sivaji, S. Marisarla, V. Narayanan, V. Kaloyanova, U. Ghia, K. Ghia, Aerodynamic and structural analyses of Joined Wings of Hale aircraft, in: K. Fujii, K. Nakahashi, S. Obayashi, S. Komurasaki (Eds.), New Developments in Computational Fluid Dynamics, Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM), vol. 90, Springer, Berlin, Heidelberg, 2005, pp. 152–164. http://dx.doi.org/10.1007/3-540-31261-7_14. URL 〈http://dx.doi.org/10.1007/3-540-31261-7_14〉 V.B. Kaloyanova, K.N. Ghia, U. Ghia, Structural modeling and optimization of the Joined Wing of a high-altitude long-endurance (HALE) aircraft, in: 43rd AIAA Aerospace Sciences Meeting and Exhibit, no. AIAA 2005-1087, Reno, Nevada, 2005. http://dx.doi.org/10.2514/6.2005–1087. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2005–1087〉 V.B. Kaloyanova, Structural modeling and optimization of the Joined Wing of a high-altitude long-endurance (HALE) aircraft (Ph.D. Thesis), University of Cincinnati, July 2009. URL 〈http://rave.ohiolink.edu/etdc/view?acc_num=ucin1259075776〉 S. LeDoux, J. Vassberg, M. Dehaan, G. Fatta, Aerodynamic cruise design of a Joined Wing SensorCraft, in: 26th AIAA Applied Aerodynamics Conference, no. AIAA 2008-7190, Honolulu, Hawaii, 2008. http://dx.doi.org/10.2514/6.2008–7190. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2008–7190〉 C.L. Pettit, R.A. Canfield, R. Ghanem, Stochastic analysis of an aeroelastic system, in: 15th ASCE Engineering Mechanics Conference, no. EM-2002, Columbia University, New York, NY, 2002. M. Blair, D. Garmann, R. Canfield, V. Bond, P. Pereira, A. Suleman, Non-linear aeroelastic scaling of a Joined-wing concept, in: 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, no. AIAA 2007-1887, Honolulu, Hawaii, 2007. http://dx.doi.org/10.2514/6.2007–1887. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2007–1887〉 B.J. Adams, Structural stability of a Joined-Wing Sensorcraft (Master's Thesis), Air Force Institute of Technology, Department of Aeronautics and Astronautics, June 2007. URL 〈http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA470037〉 D.-H. Lee, P. Chen, Nonlinear aeroelastic studies on a joined-wing with wing buckling effects, 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, no. AIAA 2004-1944, Palm Springs, California, 2004. http://dx.doi.org/10.2514/6.2004–1944. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2004–1944〉 V. Bond, R. Canfield, J. Cooper, M. Blair, Scaling for a static nonlinear response of a joined-wing aircraft, 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, no. AIAA 2008-5849, Victoria, British Columbia Canada, 2008. http://dx.doi.org/10.2514/6.2008–5849. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2008–5849〉 Bond, 2012, Experimental nonlinear static deflection of a subscale Joined Wing, J. Aircr., 49, 329, 10.2514/1.C031423 Boston, 2011, Experiments with geometric nonlinear coupling for analytical validation, J. Aircr., 48, 1136, 10.2514/1.C031033 J. Boston, E. Swenson, D. Kunz, W. Yu, M. Blair, Experiments with geometric non-linear coupling for analytical validation, in: 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, no. AIAA 2010-3018, Orlando, Florida, 2010. http://dx.doi.org/10.2514/6.2010–3018. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2010–3018〉 J. Boston, Experiments with geometric nonlinear coupling for analytical validation (Master's Thesis), Air Force Institute of Technology, Department of Aeronautical Engineering, March 2010. T. Kim, E. Swenson, D. Kunz, N. Lindsley, M. Blair, Follower-force experiments with geometric nonlinear coupling for analytical validation, in: 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, no. AIAA 2011-1978, Denver, Colorado, 2011. T.H. Kim, Follower-force experiments with geometric nonlinear coupling for analytical validation (Master's Thesis), Air Force Institute of Technology, Department of Aeronautical Engineering, March 2011. Cavallaro, 2015, Risks of linear design of Joined Wings, CEAS Aeronaut. J., 6, 161, 10.1007/s13272-014-0136-x J. Robinson, Structural Testing and Analysis of a Joined Wing Technology Demonstrator, Technical Report AFRL-VA-WP-TR-2004–3048, Airforce Research Lab, 2004. B. Maxwell, R. Jason, A.M. William, C.B. Jason, A Joined-wing Flight Experiment, Technical Report AFRL-RB-WP-TR-2008–3101, Air Force Research Laboratory Air Vehicles Directorate, 2008. W.A. McClelland, Inertia measurement and dynamic stability analysis of a radio-controlled joined-wing aircraft (Master's Thesis), Department of the Air Force Air University, Air Force Institute of Technology, March 2006. URL 〈www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA451280〉 V. Sharma, E. Reichenbach, Development of an innovative support system for SensorCraft model, in: 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, no. AIAA 2011-1958, Denver, Colorado, 2011. http://dx.doi.org/10.2514/6.2011–1958. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2011–1958〉 R. Scott, M. Castelluccio, D. Coulson, J. Heeg, Aeroservoelastic wind-tunnel tests of a free-flying, Joined-Wing SensorCraft model for gust load alleviation, in: 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, no. AIAA 2011-1960, Denver, Colorado, 2011. http://dx.doi.org/10.2514/6.2011–1960. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2011–1960〉 J. Heeg, E. Morelli, Evaluation of simultaneous-multisine excitation of the joined wing SensorCraft aeroelastic wind tunnel model, in: 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, no. AIAA 2011-1959, Denver, Colorado, 2011. http://dx.doi.org/10.2514/6.2011–1959. M. Scott, A. Enke, J. Flanagan, Sensorcraft free-flying aeroservoelastic model design and fabrication, in: 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, no. AIAA 2011-1957, Denver, Colorado, 2011. http://dx.doi.org/10.2514/6.2011–1957. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2011–1957〉 R. Cavallaro, L. Demasi, A. Passariello, Nonlinear analysis of Prandtl Plane Joined Wings – Part II: effects of anisotropy, in: 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, no. AIAA 2012-1462, Honolulu, Hawaii, 2012. http://dx.doi.org/10.2514/6.2012–1462. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2012–1462〉 Cavallaro, 2014, Nonlinear analysis of Prandtl plane joined wings, AIAA J., 52, 964, 10.2514/1.J052242 P. Pereira, L. Almeida, A. Suleman, V. Bond, R. Canfield, M. Blair, Aeroelastic scaling and optimization of a joined-wing aircraft concept, in: 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, no. AIAA 2007-1889, Honolulu, Hawaii, 2007. http://dx.doi.org/10.2514/6.2007–1889. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2007–1889〉 A. Suleman, Research and development of a scaled Joined Wing flight vehicle, Technical Report Grant 05-3076, Instituto Superior Tecnico, Departmento de Engenharia Mecanica, contract number FA8655-05-1-3076, 2007. V. Bond, R. Canfield, A. Suleman, M. Blair, Aeroelastic scaling for verification and evaluation of geometric nonlinearity on a joined-wing aircraft mode, in: 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, no. AIAA 2008-6073, Victoria, British Columbia Canada, 2008. http://dx.doi.org/10.2514/6.2008–6073. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2008–6073〉 Bond, 2012, Aeroelastic scaling of a joined Wing for nonlinear geometric stiffness, AIAA J., 50, 513, 10.2514/1.41139 J. Richards, A. Suleman, R. Canfield, M. Blair, Design of a scaled rpv for investigation of gust response of joined-wing Sensorcraft, in: 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, no. AIAA 2009-2218, Palm Springs, 2009. http://dx.doi.org/10.2514/6.2009–2218. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2009–2218〉 J. Richards, A. Suleman, T. Aarons, R. Canfield, Multidisciplinary design for flight test of a scaled Joined Wing SensorCraft, in: 13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference, no. AIAA 2010-9351, Fort Worth, Texas, 2010. http://dx.doi.org/10.2514/6.2010–9351. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2010–9351〉 J. Richards, T. Aarons, A. Suleman, R. Canfield, C. Woolsey, N. Lindsley, M. Blair, Design for flight test of a scaled Joined Wing SensorCraft, in: 52rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, no. AIAA-2011-2011, Denver, Colorado, 2011, sDM 2011 Student Papers Competition. http://dx.doi.org/10.2514/6.2011–2011. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2011–2011〉 T.D. Aarons, Development and implementation of a flight test program for a geometrically scaled Joined Wing SensorCraft remotely piloted vehicle (Master's Thesis), Virginia Tech, Department of Aerospace and Ocean Engineering, October 2011. J. Richards, T. Aarons, J. Garnand-Royo, A. Suleman, R. Canfield, C. Woolsey, Airworthiness evaluation of a scaled joined-wing aircraft, in: 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, no. AIAA-2012-1721, Honolulu, Hawaii, 2012. http://dx.doi.org/10.2514/6.2012–1721. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2012–1721〉 C. A. Eger, A. Ricciardi, R. A. Canfield, M. Patil, Design of a scaled flight test vehicle including linear aeroelastic effects, in: 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, no. AIAA 2013-1563, Boston, Massachusetts, 2013, sDM Student Papers Competition. http://dx.doi.org/10.2514/6.2013–1563. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2013–1563〉 L. Demasi, E. Livne, The structural order reduction challenge in the case of geometrically nonlinear joined-wing configurations, in: 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, no. AIAA 2007-2052, Honolulu, Hawaii, 2007. http://dx.doi.org/10.2514/6.2007–2052. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2007–2052〉 L. Demasi, A. Palacios, A reduced order nonlinear aeroelastic analysis of joined wings based on the proper orthogonal decomposition, in: 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, no. AIAA 2010-2722, Orlando, Florida, 2010. http://dx.doi.org/10.2514/6.2010–2722. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2010–2722〉 N. Teunisse, P. Tiso, L. Demasi, R. Cavallaro, A computational method for structurally nonlinear Joined Wings based on modal derivatives, in: 55th AIAA/ASMe/ASCE/AHS/SC Structures, Structural Dynamics, and Materials Conference, AIAA Science and Technology Forum and Exposition (SciTech2014) National Harbor, Maryland, no. AIAA 2014–0494, American Institute of Aeronautics and Astronautics, 2014. http://dx.doi.org/10.2514/6.2014–0494. URL http://arc.aiaa.org/doi/abs/10.2514/6.2014–0494〉 A.P. Ricciardi, R.A. Canfield, M. Patil, N. Lindsley, Nonlinear aeroelastic scaling of a joined-wing aircraft, in: 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, no. AIAA 2012-1454, Honolulu, Hawaii, 2012. A. Ricciardi, R.A. Canfield, M. Patil, C.A. Eger, N.J. Lindsley, Nonlinear aeroelastic scaled model optimization using equivalent static loads, in: 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, no. AIAA 2013-1785, Boston, Massachusetts, 2013. http://dx.doi.org/10.2514/6.2013–1785. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2013–1785〉 Ricciardi, 2014, Nonlinear aeroelastic-scaled-model optimization using equivalent static loads, J. Aircr., 51, 1842, 10.2514/1.C032539 J. Richards, J.S. Garnand-Royo, A. Suleman, R.A. Canfield, C.A. Woolsey, Design and evaluation of aeroelastically tuned joined-wing SensorCraft flight test article, in: 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, no. AIAA 2013-1786, Boston, Massachusetts, 2013, SDM Student Papers Competition. http://dx.doi.org/10.2514/6.2013–1786. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2013–1786〉 T.A. Weisshaar, D.H. Lee, Aeroelastic tailoring of joined-wing configurations, in: 43nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, no. AIAA 2002-1207, Denver, CO, 2002. http://dx.doi.org/10.2514/6.2002–1207. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2002–1207〉 D.-H. Lee, Aeroelastic tailoring and structural optimization of joined-wing configurations (Ph.D. Thesis), Purdue University, 18 July 2002. URL 〈http://docs.lib.purdue.edu/dissertations/AAI3099813/〉 Letcher, 1972, V-wings and diamond-ring wings of minimum induced drag, J. Aircr., 9, 605, 10.2514/3.59045 Demasi, 2014, Invariant formulation for the minimum induced drag conditions of nonplanar wing systems, AIAA J., 52, 2223, 10.2514/1.J052837 L. Demasi, A. Dipace, G. Monegato, R. Cavallaro, An invariant formulation for the minimum induced drag conditions of non-planar wing systems, in: 52nd Aerospace Sciences Meeting, AIAA Science and Technology Forum and Exposition (SciTech2014), no. AIAA 2014-0901, National Harbor, Maryland, 2014. http://dx.doi.org/10.2514/6.2014–0901. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2014–0901〉 Demasi, 2015, Minimum induced drag theorems for joined wings, closed systems, and generic biwings, J. Optim. Theory Appl., 1 Demasi, 2015, Minimum induced drag theorems for joined wings, closed systems, and generic biwings, J. Optim. Theory Appl., 1 L. Demasi, G. Monegato, A. Dipace, R. Cavallaro, Minimum induced drag theorems for Joined Wings, closed systems, and generic biwings: theory, in: 2th SciTech2015, Kissimmee, Florida, 2015. http://dx.doi.org/10.2514/6.2015–0697. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2015–0697〉 L. Demasi, G. Monegato, E. Rizzo, R. Cavallaro, A. Dipace, Minimum induced drag theorems for Joined Wings, closed systems, and generic biwings: results, in: 2th SciTech2015, Kissimmee, Florida, 2015. http://dx.doi.org/10.2514/6.2015–0698. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2015–0698〉 C. Cesnik, W. Su, Nonlinear aeroelastic modeling and analysis of fully flexible aircraft, in: 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, no. AIAA 2005-2169, Austin, Texas, 2005. http://dx.doi.org/10.2514/6.2005–2169. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2005–2169〉 R. Palacios, C.E. Cesnik, Reduced order modeling of integral-strained slender wings, in: 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, no. AIAA 2004-2038, 2004. http://dx.doi.org/10.2514/6.2004–2038. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2004–2038〉 E. Reichenbach, Aeroservoelastic design and test validation of the joined wing Sensorcraft, in: 26th AIAA Applied Aerodynamics Conference, no. AIAA 2008-7189, Honolulu, Hawaii, 2008. http://dx.doi.org/10.2514/6.2008–7189. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2008–7189〉 E. Alyanak, G. Brooks, Aero-elastic analysis of sensor craft configurations using avus and nastran, in: 48th AIAA Aerospace Science Meeting Including the New Horizons Forum and Aerospace Exposition, no. AIAA 2010-49, Orlando, Florida, 2010. http://dx.doi.org/10.2514/6.2010-49. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2010-49〉 S. Bhasin, P. Chen, Z. Wan, L. Demasi, Dynamic nonlinear aeroelastic analysis of the Joined Wing configuration, in: 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, no. AIAA 2012-1791, Honolulu, Hawaii, 2012. http://dx.doi.org/10.2514/6.2012–1791. A.P. Ricciardi, M.J. Patil, R.A. Canfield, Utility of quasi-static gust loads certification methods for novel configurations, in: 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, no. AIAA 2011-2043, Denver, Colorado, 2011. http://dx.doi.org/10.2514/6.2011–2043. URL 〈http://arc.aiaa.org/doi/pdf/10.2514/6.2011–2043〉 A.P. Ricciardi, Utility of quasi-static gust loads certification methods for novel configurations (Master's Thesis), Virginia Tech, September 2011. URL 〈http://theses.lib.vt.edu/theses/available/etd-10112011-132748/〉 Ricciardi, 2013, Evaluation of quasi-static gust loads certification methods for high-altitude long-endurance aircraft, J. Aircr., 50, 457, 10.2514/1.C031872 N.S. Green, R.A. Canfield, E.D. Swenson, W. Yu, M. Blair, Structural optimization of joined-wing beam model with bend-twist coupling using equivalent static loads, in: 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, no. AIAA 2009-2644, Palm Springs, California, 2009. http://dx.doi.org/10.2514/6.2009–2644. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2009–2644〉 N.S. Green, Structural optimization of joined-wing beam model with bend-twist coupling using equivalent static loads (Master's Thesis), Air Force Institute of Technology, Department of Aeronautical Engineering, June 2009. S. Liu, D.P. Wickert, R.A. Canfield, Fluid-structure transient gust response sensitivity for a nonlinear joined wing model, in: 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, no. AIAA 2010-3118, Orlando, Florida, 2010. http://dx.doi.org/10.2514/6.2010–3118. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2010–3118〉 S. Liu, R. Canfield, Continuum shape sensitivity for nonlinear transient aeroelastic gust response, in: 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, no. AIAA 2011-1971, Denver Colorado, 2011. http://dx.doi.org/10.2514/6.2011–1971. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2011–1971〉 Z. Sotoudeh, R. Canfield, M. Patil, S. Liu, A. Ricciardi, A hybrid quasi-steady cfd-inflow approach for gust response analysis of highly flexible aircraft, in: 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, no. AIAA 2012-1717, Honolulu, Hawaii, 2012. http://dx.doi.org/10.2514/6.2012–1717. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2012–1717〉 M.J. Patil, Nonlinear aeroelastic analysis of joined-wing aircraft, Presented at the 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, no. AIAA 2003-1487, Norfolk, Virginia, 2003. http://dx.doi.org/10.2514/6.2003–1487. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2003–1487〉 Demasi, 2013, Postcritical analysis of Prandtl Plane joined-wing configurations, AIAA J., 51, 161, 10.2514/1.J051700 Demasi, 2015, Post-critical analysis of highly deformable joined wings, J. Fluids Struct., 54, 701, 10.1016/j.jfluidstructs.2015.01.009 R. Cavallaro, A. Iannelli, L. Demasi, A.M. Razón, Phenomenology of nonlinear aeroelastic responses of highly deformable joined-wings configurations, in: 55th AIAA/ASMe/ASCE/AHS/SC Structures, Structural Dynamics, and Materials Conference, AIAA Science and Technology Forum and Exposition (SciTech2014), no. AIAA 2014-1199, National Harbor, Maryland, 2014. http://dx.doi.org/10.2514/6.2014–1199. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2014–1199〉 Sotoudeh, 2011, Incremental method for structural analysis of joined-wing aircraft, J. Aircr., 48, 1588, 10.2514/1.C031302 Z. Sotoudeh, D.H. Hodges, Parametric Study of Joined-Wing Aircraft Geometry, in: 51rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, no. AIAA 2010-2718, Orlando, Florida, 2010. http://dx.doi.org/10.2514/6.2010–2718. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2010–2718〉 J. Cardoso, A. Suleman, J.E. Cooper, Performance evaluation of a morphing joined wing aircraft configuration, in: 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, no. AIAA 2013-1450, Boston, Massachusetts, 2013. http://dx.doi.org/10.2514/6.2013–1450. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2013–1450〉 Georgiou, 2014, Aeroelastic tailoring and scaling using bacterial foraging optimisation, Struct. Multidiscip. Optim., 50, 81, 10.1007/s00158-013-1033-3 N. Paletta, M. Belardo, L.D. Palma, Non-linear dynamic loads due to the landing impact of a joined-wing UAV, SAE Technical Paper 2011-01-2720, 2011. http://dx.doi.org/10.4271/2011-01-2720. URL 〈http://papers.sae.org/2011-01-2720/〉 Belardo, 2014, Structural and aeroelastic design of a joined-wing UAV, J. Aerosp. Eng., 27, 93, 10.1061/(ASCE)AS.1943-5525.0000251 B. Imperatore, L. Vecchione, A flexible wing unmanned aerial research system, SAE Technical Paper 2009-01-3127, 2009. http://dx.doi.org/10.4271/2009-01-3127. L. Di Palma, N. Paletta., M. Pecora, Aeroelastic design of a joined-wing UAV, SAE Technical Paper 2009-01-3150, 2009. http://dx.doi.org/10.4271/2009-01-3150. URL 〈http://papers.sae.org/2009-01-3150/〉 Paletta, 2010, Load Alleviation on a Joined-Wing Unmanned Aircraft, J. Aircr., 47, 2005, 10.2514/1.C000265 F. Gern, J. Gundlach, A. Ko, A. Naghshineh-Pour, E. Sulaeman, P.-A. Tétrault, B. Grossman, R.K. Kapania, W. Mason, J.A. Schetz, R.T. Haftka, Multidisciplinary design optimization of a transonic commercial transport with a Strut-Braced Wing, SAE Technical Paper 1999-01-5621, 1999. http://dx.doi.org/10.4271/1999-01-5621. M. Bhatia, R. Kapania, M. van Hoek, R. Haftka, Structural design of a Truss Braced Wing: potential and challenges, in: 50th AIAA/ASME/ASCE/AHS/ASC Structure, Structural Dynamics, and Materials Conference, no. AIAA 2009-2147, Palm Springs, California, 2009. http://dx.doi.org/10.2514/6.2009–2147. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2009–2147〉 W. Pfenninger, Design considerations of large subsonic long range transport airplanes with low drag boundary layer suction, Nai-54–800, 1954. W. Pfenninger, Laminar flow control laminarization, Agard 654, special Course on Concepts for Drag Reduction, 1977, Summarized from the Report Some Thoughts on the Design of Large Global Range LFC Transport Airplanes, January 1976, 1977. W. Pfenninger, C.S. Vermuru, Design aspects of long range supersonic lfc airplanes with highly swept wings, SAE Paper 881397, 1988. R. Kulfan, J. Vachal, Wing Planform Geometry Effects on Large Subsonic Military Transport Airplanes, Technical Report AFFDL-TR-78-16, Air Force Flight Dynamics Laboratory, 1978. Jobe, 1979, Wing planforms for large military transports, J. Aircr., 16, 425, 10.2514/3.58544 R.V. Turriziani, W.A. Loveli, G.L. Martin, J.E. Price, E.E. Swanson, G.F. Washburn, Preliminary Design Characteristics of a Subsonic Business Jet Concept Employing an Aspect Ratio 25 Strut-Braced Wing, Technical Report CR 159361, NASA, 1980. R.V. Turriziani, W.A. Loveli, G.L. Martin, J.E. Price, E.E. Swanson, G.F. Washburn, A Study of High-altitude Manned Research Aircraft Employing Strut-braced Wings of High Aspect Ratio, Technical Report CR 159262, NASA, 1981. Keldysh, 1985, Izbrannye trudy, Mekanika, 304 Mailybaev, 1996, The Keldish problem on aeroelastic stability of a strut-braced wing, Phys.-Dokl., 41, 484 Mailybaev, 1998, Aeroelastic stability of a wing with bracing struts (Keldysh problem), Fluid Dyn., 33, 124, 10.1007/BF02698170 J.M. Grasmeyer, B. Grossman, R.T. Haftka, W.H. Mason, J.A. Schetz, Multidisciplinary Design Optimization of a Strut-braced Wing Aircraft with Tip-mounted Engines, Technical Report MAD 98-01-01, NASA, 1998. J.M. Grasmeyer, Multidisciplinary design optimization of a strut-braced wing aircraft (Master's Thesis), Virginia Polytechnic Institute and State University, Department of Aerospace and Ocean Engineering, April 1998. J. Grasmeyer, Multidisciplinary design optimization of a transonic strut-braced wing aircraft, 37th AIAA Aerospace Sciences Meeting and Exhibit, no. AIAA 99-0010, 11–14 January 1999, Reno, NV, 1999. http://dx.doi.org/10.2514/6.1999-10. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.1999-10〉 A.H. Naghshineh-Pour, Multidisciplinary design optimization of a Strut-Braced Wing aircraft (Master's Thesis), Virginia Polytechnic Institute and State University, Department of Aerospace and Ocean Engineering, November 1998. A. Naghshineh-Pour, R.K. Kapania, R.T. Haftka, Preliminary Structural Analysis of a Strut-Braced Wing, Technical Report VPI-AOE-256, 1998. J.F. Gundlach IV, Multidisciplinary design optimization and industry review of a 2010 Strut-Braced Wing transonic transport (Master's Thesis), Virginia Polytechnic Institute and State University, Department of Aerospace and Ocean Engineering, June 1999. K. Martin, B. Kopec, A Structural and Aerodynamic Investigation of a Strut-Braced Wing Transport Aircraft Concept, Technical Report NAS1-96014, 1998. J. Gundlach, P.-A. Tétrault, F. Gern, A. Nagshineh-Pour, A. Ko, J. Schetz, W. Mason, R. Kapania, B. Grossman, R. Haftka, Multidisciplinary design optimization of a strut-braced wing transonic transport, in: 38th Aerospace Sciences Meeting & Exhibit, no. AIAA 2000-0420, Reno, Nevada, 2000. http://dx.doi.org/10.2514/6.2000-420. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2000-420〉 Gundlach, 2000, Conceptual design studies of a strut-braced wing transonic transport, J. Aircr., 37, 976, 10.2514/2.2724 J. Coster, R. Haftka, Preliminary Topology Optimization of a Truss-Braced Wing, Technical Report, Department of Aerospace Engineering, Mechanics, and Engineering Sciences, University of Florida, Gainesville, Florida, 1996. J. Wolkovitch, The joined wing – an overview, in: 23rd Aerospace Sciences Meeting, Reno, Nevada, 1985. D.M. Bushnell, Fluid mechanics, drag reduction and advanced configuration aeronautics, NASA/TM-2000-210646, 2000. Y.-Y. A. Ko, The role of constraints and vehicle concepts in transport design: a comparison of cantilever and strut-braced wing airplane concepts (Master's Thesis), Virginia Polytechnic Institute and State University, Department of Aerospace and Ocean Engineering, April 2000. A. Ko, B. Grossman, W. Mason, R. Haftka, The role of constraints in the MDO of a cantilever and strut-braced wing transonic commercial transport aircraft, in: 2000 World Aviation Conference, no. AIAA 2000-5609, San Diego, California, 2000. http://dx.doi.org/10.2514/6.2000–5609. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2000–5609〉 F. Gern, A. Ko, B. Grossman, R. Haftka, R.K. Kapania, W. Mason, Transport weight reduction through mdo: the Strut-Braced Wing transonic transport, in: 35th AIAA Fluid Dynamics Conference and Exhibit, no. AIAA 2005-4667, Toronto, Canada, 2005. http://dx.doi.org/10.2514/6.2005–4667. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2005–4667〉 A. Ko, W.H. Mason, B. Grossman, J. Schetz, A-7 Strut Braced Wing concept transonic wing design, Vpi-aoe-275, Virginia Tech, 2002. Gern, 2001, Multidisciplinary design optimization of a transonic commercial transport with strut-braced wing, J. Aircr., 38, 1006, 10.2514/2.2887 L.T. Leifsson, Multidisciplinary design optimization of low-noise transport aircraft (Ph.D. Thesis), Virginia Polytechnic Institute and State University, Department of Aerospace and Ocean Engineering, August 2005. Gern, 2001, Structural wing sizing for multidisciplinary design optimization of a Strut-Braced Wing, J. Aircr., 38, 154, 10.2514/2.2747 O. Gur, M. Bhatia, J. Schetz, W. Mason, R. Kapania, D. Mavris, Design optimization of a truss-braced wing aircraft, in: 9th AIAA Aviation technology, Integration, and Operations Conference (ATIO), no. AIAA 2009-7114, Hilton Head, South Carolina, 2009. http://dx.doi.org/10.2514/6.2009–7114. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2009–7114〉 Gur, 2010, Design optimization of a truss-braced-wing transonic transport aircraft, J. Aircr., 47, 1907, 10.2514/1.47546 O. Gur, M. Bhatia, W. Mason, J. Schetz, R.K. Kapania, T. Nam, Development of framework for truss-braced wing conceptual MDO, in: 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, no. AIAA 2010-2754, Orlando, Florida, 2010. http://dx.doi.org/10.2514/6.2010–2754. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2010–2754〉 Gur, 2011, Development of a framework for truss-braced wing conceptual MDO, Struct. Multidiscip. Optim., 44, 277, 10.1007/s00158-010-0612-9 G. Seber, H. Ran, J.A. Schetz, D.N. Mavris, Multidisciplinary design optimization of a Truss Braced Wing aircraft with upgraded aerodynamic analyses, in: 29th AIAA Applied Aerodynamics Conference, no. AIAA 2011–3179, 27–30 June 2011, Honolulu, Hawaii, 2011. http://dx.doi.org/10.2514/6.2011–3179. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2011–3179〉 Meadows, 2012, Multidisciplinary design optimization of medium-range transonic Truss-Braced Wing transport aircraft, J. Aircr., 49, 1844, 10.2514/1.C031695 N.A. Meadows, Multidisciplinary design optimization of a medium range transonic Truss-Braced Wing transport aircraft (Master's Thesis), Virginia Tech, Department of Aerospace and Ocean Engineering, June 2011. URL 〈https://theses.lib.vt.edu/theses/available/etd-07292011-211658/〉 C. Shirley, J. Schetz, R. Kapania, R. Haftka, Trade-offs of wing weight and lift/drag on design of medium-range transport aircraft, 12th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference and 14th AIAA/ISSM, no. AIAA 2012-5559, Indianapolis, Indiana, 2012. http://dx.doi.org/10.2514/6.2012–5559. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2012–5559〉 R. Gupta, W. Mallik, R.K. Kapania, J. Schetz, Multidisciplinary design optimization of subsonic Truss-Braced Wing cargo aircraft, in: 52nd Aerospace Sciences Meeting, no. AIAA 2014–0186, National Harbor, Maryland, 2014. http://dx.doi.org/10.2514/6.2014–0186. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2014–0186〉 T. Nam, I. Chakraborty, J. Gross, D.N. Mavris, J. Schetz, R. K. Kapania, Multidisciplinary design optimization of a Truss-Braced Wing concept, in: 14th AIAA Aviation Technology, Integration, and Operations Conference, no. AIAA 2014-2423, Atlanta, Georgia, 2014. http://dx.doi.org/10.2514/6.2014–2423. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2014–2423〉 Nam, 2015, Comparative assessment of strut-braced and truss-braced wing configurations using multidisciplinary design optimization, J. Aircr., 52, 2009, 10.2514/1.C033120 I. Chakraborty, J.R. Gross, T. Nam, C. Perullo, D.N. Mavris, Analysis of the effect of cruise speed on fuel efficiency and cost for a Truss-Braced Wing concept, in: 14th AIAA Aviation Technology, Integration, and Operations Conference, no. AIAA 2014-2424, Atlanta, Georgia, 2014. http://dx.doi.org/10.2514/6.2014–2424. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2014–2424〉 M. Bradley, C. Droney, Subsonic ultra green aircraft research: Phase I final report, Cd-2011-216847, NASA, 2011. M. Bradley, C. Droney, Subsonic ultra green aircraft research phase II: N +4 advanced concept development, Cr-2012-217556, NASA, 2012. G. Follen, R. Del Rosario, R. Wahls, N. Madavan, Nasa's fundamental aeronautics subsonic fixed wing project: Generation N+3 technology portfolio, SAE Technical Paper 2011-01-2521, 2011. http://dx.doi.org/10.4271/2011-01-2521. T.J. Allen, B.W. Sexton, M.J. Scott, SUGAR Truss Braced Wing full scale aeroelastic analysis and dynamically scaled wind tunnel model development, in: 56th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, no. AIAA 2015-1171, Kissimmee, Florida, 2015. http://dx.doi.org/10.2514/6.2015–1171. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2015–1171〉 M.J. Scott, T.J. Allen, C.J. Funk, M.A. Castelluccio, B.W. Sexton, S. Claggett, J. Dykman, D.A. Coulson, R.E. Bartels, Aeroservoelastic wind-tunnel test of the SUGAR Truss Braced Wing wind tunnel model, in: 56th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, no. AIAA 2015-1172, Kissimmee, Florida, 2015. http://dx.doi.org/10.2514/6.2015–1172. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2015–1172〉 E. Sulaeman, Effect of compressive force on aeroelastic stability of a Strut-Braced Wing (Ph.D. Thesis), Virginia Polytechnic Institute and State University, Department of Aerospace and Ocean Engineering, Blacksburg, Virginia, November 2001. M. Bhatia, R.K. Kapania, R.T. Haftka, Structural and aeroelastic characteristics of Truss Braced Wings: A parametric study, in: 52nd AIAA/ASME/ASCE/AHS, no. AIAA 2011-1710, Denver, Colorado, 2011. http://dx.doi.org/10.2514/6.2011–1710. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2011–1710〉 Bhatia, 2012, Structural and aeroelastic characteristics of truss-braced wings, J. Aircr., 49, 302, 10.2514/1.C031556 L. Butt, M. Bhatia, R.K. Kapania, Flutter modeling and suppression for a Strut-Braced Wing, in: 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, no. AIAA 2012-1794, Honolulu, Hawaii, 2012. http://dx.doi.org/10.2514/6.2012–1794. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2012–1794〉 M. Bhatia, R.K. Kapania, O. Gur, J. Schetz, W. Mason, R.T. Haftka, Progress towards multidisciplinary design optimization of Truss Braced Wing aircraft with flutter constraints, in: 13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference, no. AIAA 2010-9077, Fort Worth, Texas, 2010. http://dx.doi.org/10.2514/6.2010–9077. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2010–9077〉 W. Mallik, R.K. Kapania, J.A. Schetz, Aeroelastic analysis and optimization of flexible wing aircraft with a novel control effector, in: 56th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, no. AIAA 2015-1175, Kissimmee, Florida, 2015. http://dx.doi.org/10.2514/6.2015–1175. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2015–1175〉 Mallik, 2015, Effect of flutter on the multidisciplinary design optimization of Truss-Braced-Wing aircraft, J. Aircr., 52, 1858, 10.2514/1.C033096 W. Mallik, R.K. Kapania, J. Schetz, Development of framework for Truss-Braced Wing conceptual mdo, in: 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, no. AIAA 2013-1454, Boston, Massachusetts, 2013. http://dx.doi.org/10.2514/6.2013–1454. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2013–1454〉 E. Sulaeman, R. Kapania, R. Haftka, Parametric studies of flutter speed in a Strut-Braced Wing, in: 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, no. AIAA 2002-1487, Denver, Colorado, 2002. http://dx.doi.org/10.2514/6.2002–1487. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2002–1487〉 E. Sulaeman, R. Kapania, R. Haftka, Effect of compressive force on strut-braced wing response, in: 42nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, no. AIAA 2001-1611, Seattle, WA, 2001. http://dx.doi.org/10.2514/6.2001–1611. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2001–1611〉 Rodden, 1998, Further refinement of the subsonic doublet-lattice method, J. Aircr., 35, 720, 10.2514/2.2382 Albano, 1969, A doublet lattice method for calculating lift distributions on oscillating surfaces in subsonic flows, AIAA J., 7, 279, 10.2514/3.5086 P.C. Chen, E. Sulaeman, Nonlinear response of open/closed-loop aeroelastic system using a discrete state-space approach, in: 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, no. AIAA 2003-1734, Norfolk, Virginia, 2003. http://dx.doi.org/10.2514/6.2003–1734. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2003–1734〉 Chen, 2003, Nonlinear response of aeroservoelastic systems using discrete state-space approach, AIAA J., 41, 1658, 10.2514/2.7311 J. Coggin, R.K. Kapania, W. Zhao, J. Schetz, V. Siddaramaiah, Nonlinear aeroelastic analysis of a Truss Based Wing wind tunnel model, in: 55th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, no. AIAA 2014-0335, National Harbor, Maryland, 2014. http://dx.doi.org/10.2514/6.2014–0335. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2014–0335〉 W. Zhao, R.K. Kapania, J.A. Schetz, J.M. Coggin, T.J. Allen, B.W. Sexton, Nonlinear aeroelastic analysis of SUGAR Truss Braced Wing wind tunnel model under in-plane loads, in: 56th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, no. AIAA 2015-1173, Kissimmee, Florida, 2015. http://dx.doi.org/10.2514/6.2015–1173. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2015–1173〉 R.E. Bartels, R.C. Scott, T.J. Allen, B.W. Sexton, Aeroelastic analysis of SUGAR Truss Braced Wing wind-tunnel model using FUN3D and nonlinear structural model, in: 56th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, no. AIAA 2015-1174, Kissimmee, Florida, 2015. http://dx.doi.org/10.2514/6.2015–1174. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2015–1174〉 R.E. Bartels, R.C. Scott, C.J. Funk, T.J. Allen, B.W. Sexton, Computed and experimental flutter/LCO onset for the Boeing Truss-Braced Wing wind-tunnel model, in: 44th AIAA Fluid Dynamics Conference, no. AIAA 2014-2446, 2014. http://dx.doi.org/10.2514/6.2014–2446. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2014–2446〉 E. Ting, K. Reynolds, N. Nguyen, J. Totah, Aerodynamic analysis of the Truss-Braced Wing aircraft using vortex-lattice superposition approach, in: 32nd AIAA Applied Aerodynamics Conference, no. AIAA 2014-2597, 2014 http://dx.doi.org/10.2514/6.2014–2597. P. Chen, Z. Zhou, S.S. Ghoman, N. Falkiewicz, Low-weight low-drag Truss-Braced Wing design using variable camber continuous trailing edge flaps, no. AIAA 2015–1176, 56th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, Kissimmee, Florida, 2015 http://dx.doi.org/10.2514/6.2015–1176. P.-A. Tétrault, Numerical prediction of the interference drag of a streamlined strut intersecting a surface in transonic flow (Ph.D. Thesis), Virginia Polytechnic Institute and State University, Department of Aerospace and Ocean Engineering, January 2000. Tétrault, 2001, Numerical prediction of interference drag of strut-surface intersection in transonic flow, AIAA J., 39, 857, 10.2514/3.14812 P.-A. Tétrault, J.A. Schetz, B. Grossman, Numerical prediction of interference drag of a streamlined strut intersecting a surface in transonic flow, in: 38th Aerospace Sciences Meeting and Exhibit, no. AIAA 2000-509, Reno, NV, 2000 http://dx.doi.org/10.2514/6.2000-509. A. Ko, W. Mason, B. Grossman, Transonic aerodynamics of a wing/pylon/strut juncture, in: 21st Applied Aerodynamics Conference, no. AIAA 2003-4062, Orlando, Florida, 2003 http://dx.doi.org/10.2514/6.2003–4062. R. Duggirala, C.J. Roy, J. Schetz, Analysis of interference drag for strut-strut interaction on transonic flow, in: 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, no. AIAA 2009-51, Orlando, Florida, 2009 http://dx.doi.org/10.2514/6.2009-51. Gur, 2011, Aerodynamic considerations in the design of Truss-Braced Wing aircraft, J. Aircr., 48, 919, 10.2514/1.C031171 O. Gur, J.A. Schetz, W.H. Mason, Aerodynamic considerations in the design of truss-braced wing aircraft, in: 28th AIAA Applied Aerodynamics Conference, no. AIAA 2010-4813, Chicago, Illinois, 2010 http://dx.doi.org/10.2514/6.2010–4813. T.T. Takahashi, S. Donovan, Non planar span loads for minimum induced drag, in: 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, no. AIAA 2011-639, Orlando, Florida, 2011 http://dx.doi.org/10.2514/6.2011-639. L. Demasi, G. Monegato, R. Cavallaro, Minimum induced drag theorems for multi-wing systems, in: 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, no. AIAA 2016-0236, AIAA SciTech, San Diego, California, 2016. D.J. Jingeleski, J. Schetz, R.K. Kapania, Aerodynamic analysis of variable geometry raked wingtips for mid-range transonic transport aircraft, in: 31st AIAA Applied Aerodynamics Conference, no. AIAA 2013-2403, San Diego, California, 2013 http://dx.doi.org/10.2514/6.2013–2403. R.E. Bartels, Developing an accurate CFD based model for the truss braced wing aircraft, in: 31st AIAA Applied Aerodynamics Conference, no. AIAA 2013-3044, 2013 http://dx.doi.org/10.2514/6.2013–3044. W.L. Sellers III, B.A. Singer, L.D. Leavitt, Aerodynamics for revolutionary air vehicles, in: 21st Applied Aerodynamics Conference, no. AIAA 2003-3785, Orlando, Florida, 2003 http://dx.doi.org/10.2514/6.2003–3785. S. Komadina, A. Drake, S. Bruner, Development of a quiet supersonic aircraft with technology applications to military and civil aircraft, in: 40th AIAA Aerospace Sciences Meeting and Exhibit, no. AIAA 2002-519, Reno, NV, 2002 http://dx.doi.org/10.2514/6.2002-519. F. Gern, A. Naghshineh-Pour, E. Sulaeman, R. Kapania, R. Haftka, Flexible wing model for structural sizing and multidisciplinary design optimization of a Strut-Braced Wing, in: 41st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Meeting & Exhibit, no. AIAA 2000-1327, Atlanta, GA, 2000 http://dx.doi.org/10.2514/6.2000–1327. F. Gern, A. Ko, E. Sulaeman, R. Kapania, W. Mason, B. Grossman, R. Haftka, Passive load alleviation in the design of a Strut-Braced Wing transonic transport, in: 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, no. AIAA 2000-4826, Long Beach, California, 2000 http://dx.doi.org/10.2514/6.2000–4826. K. Zhang, P.B. Ji, A. Bakar, Z. Han, Multidisciplinary evaluation of Truss Braced Wings for future green aircraft, in: 28th Congress of the International Council of the Aeronautical Sciences, no. Paper ICAS2012-1.10ST, Brisbane, Australia, 2012. URL 〈http://www.icas.org/ICAS_ARCHIVE/ICAS2012/ABSTRACTS/280.HTM〉. G. Carrier, O. Atinault, S. Dequand, J. Hantrais-Gervois, C. Liauzun, B. Paluch, A.M. Rodde, C. Toussaint, Investigation of a Strut-Braced Wing configuration for future commercial transport, in: 28th Congress of the International Council of the Aeronautical Sciences, no. Paper ICAS2012-1.10.2, Brisbane, Australia, 2012. URL 〈http://www.icas.org/ICAS_ARCHIVE/ICAS2012/ABSTRACTS/597.HTM〉. T. Von Kármán, J. Burgers, Aerodynamic theory: general aerodynamic theory – perfect fluids, in: D. W. F. (Ed.), Aerodynamic Theory, vol. 2, J. Springer, 1935, pp. 201–222. Cavallaro, 2015, Phenomenology of nonlinear aeroelastic responses of highly deformable Joined Wings, Adv. Aircr. Spacecr. Sci., 2, 125, 10.12989/aas.2015.2.2.125 N. Teunisse, P. Tiso, L. Demasi, R. Cavallaro, Reduced order methods and algorithms for structurally nonlinear Joined Wings, 56th AIAA/ASMe/ASCE/AHS/SC Structures, Structural Dynamics, and Materials Conference, AIAA Science and Technology Forum and Exposition (SciTech2015) , no. AIAA 2015-0699, Kissimmee, Florida, 2015 http://dx.doi.org/10.2514/6.2015–0699. E. Livne, Aeroelasticity of joined-wing airplane configurations: past work and future challenges – a survey, in: 42nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, Seattle, WA, 2001. L. Demasi, R. Cavallaro, F. Bertuccelli, Post-critical analysis of Joined Wings: the concept of snap-divergence as a characterization of the instability, in: 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, no. AIAA 2013-1559, Boston, Massachusetts, American Institute of Aeronautics and Astronautics, 2013 http://dx.doi.org/10.2514/6.2013–1559. M.J. Patil, Nonlinear gust response of highly flexible aircraft, in: 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, no. AIAA 2007-2013, Honolulu, Hawaii, 2007 http://dx.doi.org/10.2514/6.2007–2103. R. Cavallaro, L. Demasi, F. Bertuccelli, Risks of linear design of Joined Wings: a nonlinear dynamic perspective in the presence of follower forces, in: 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, no. AIAA 2013-1558, Boston, Massachusetts, 2013 http://dx.doi.org/10.2514/6.2013–1558. R.H. Lange, J.F. Cahill, E.S. Bradley, R.R. Eudaily, C.M. Jenness, D.G. Macwilkinson, Feasibility Study of the Transonic Biplane Concept for Transport Aircraft Applications, NASA CR-132462, Lockheed–Georgia Company. 1974. N. Divoux, A. Frediani, The lifting system of a PrandtlPlane, Part 2: preliminary study on flutter characteristics, in: G. Buttazzo, A. Frediani (Eds.), Variational Analysis and Aerospace Engineering: Mathematical Challenges for Aerospace Design, Springer Optimization and its Applications, vol. 66, Springer US, 2012, pp. 235–267. URL http://dx.doi.org/10.1007/978-1-4614–2435-2_10 Livne, 2003, Aeroelasticity of nonconventional airplane configurations—past and future, J. Aircr., 40, 1047, 10.2514/2.7217 R. Cavallaro, R. Bombardieri, L. Demasi, A. Iannelli, Prandtlplane Joined Wing: Body freedom flutter, limit cycle oscillation and freeplay studies, in: 2th SciTech2015, no. AIAA-2015-1184, Kissimmee, Florida, 2015 http://dx.doi.org/10.2514/6.2015–1184. Cavallaro, 2015, Prandtlplane joined, J. Fluids Struct., 59, 57, 10.1016/j.jfluidstructs.2015.08.016 Samuels, 1982, Structural weight comparison of a joined wing and a conventional wing, J. Aircr., AIAA 81-0366R, 19, 485, 10.2514/3.57418 G. Phlipot, X. Wang, M. Mignolet, L. Demasi, R. Cavallaro, Nonintrusive reduced order modeling for the nonlinear geometric response of some Joined Wings, in: 55th AIAA/ASMe/ASCE/AHS/SC Structures, Structural Dynamics, and Materials Conference, AIAA Science and Technology Forum and Exposition (SciTech2014), no. AIAA 2014-0151, National Harbor, Maryland, American Institute of Aeronautics and Astronautics, 2014 http://dx.doi.org/10.2514/6.2014–0151. Rodden, 1994, User Guide V 68 MSC/NASTRAN Aeroelastic Analysis, MacNeal-Schwendler Corp. Demasi, 2009, Aeroelastic coupling of geometrically nonlinear structures and linear unsteady aerodynamics, J. Fluids Struct., 25, 918, 10.1016/j.jfluidstructs.2009.03.001 Demasi, 2009, Dynamic aeroelasticity of structurally nonlinear configurations using linear modally reduced aerodynamic generalized forces, AIAA J., 47, 71, 10.2514/1.34797 ZONA Technology Inc., ZAERO, 2004, Theoretical Manual, Version 7.1. A.K. Noor, Recent Advances and Applications of Reduction Methods, Appl. Mech. Rev. 47. Idelsohn, 1985, A reduction method for nonlinear structural dynamic analysis, Comput. Methods Appl. Mech. Eng., 49, 253, 10.1016/0045-7825(85)90125-2 Slaats, 1995, Model reduction tools for nonlinear structural dynamics, Comput. Struct., 54, 1155, 10.1016/0045-7949(94)00389-K P. Tiso, E. Jansen, A finite element based reduction method for nonlinear dynamics of structures, in: 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, no. AIAA2005-1867, Austin, Texas, 2005 http://dx.doi.org/10.2514/6.2005–1867. P. Tiso, D. Rixen, Reduction methods for MEMS nonlinear dynamic analysis, in: T. Proulx (Ed.), Nonlinear Modeling and Applications, Conference Proceedings of the Society for Experimental Mechanics Series, vol. 2, Springer, New York, 2011, pp. 53–65 http://dx.doi.org/10.1007/978-1-4419–9719-7_6. Norman, 1985, Nonlinear structural dynamic analysis using a modified modal method, AIAA J., 23, 1594, 10.2514/3.9129 Shalev, 1995, Nonlinear analysis using a modal-based reduction technique, Compos. Struct., 31, 257, 10.1016/0263-8223(94)00059-X A. Frediani, Large dimension aircraft, US Patent 5,899,409, May 4, 1999. URL 〈http://www.google.as/patents/US5899409. A. Frediani, V. Cipolla, E. Rizzo, The Prandtl Plane configuration: overview on possible applications to civil aviation, in: G. Buttazzo, A. Frediani (Eds.), Variational Analysis and Aerospace Engineering: Mathematical Challenges for Aerospace Design, Springer Optimization and its Applications, vol. 66, Springer US, 2012, pp. 179–210 http://dx.doi.org/10.1007/978-1-4614–2435-2_8. Mamla, 2009, Basic induced drag study of the joined-wing aircraft, J. Aircr., 46, 1438, 10.2514/1.42084 J.F. Cahill, D.H. Stead, Preliminary investigation at subsonic and transonic speeds of the aerodynamic characteristics of a biplane composed of a sweptback and sweptforward wing joined at the tips, Research Memorandum RM L53L24b, NACA, March 12, 1954. L.R. Miranda, Boxplane wing and aircraft, US Patent 3834654 A, September 1974. URL 〈http://www.google.com/patents/US3834654. Munk, 1919, Isoperimetrische aufgaben aus der theorie des fluges, Dieterichsche Univ.-Buch. L. Miranda, Boxplane Configuration – Conceptual Analysis and Initial Experimental Verification, Internal Report LR25180, Lockheed-California Company, March 1972. D. Dal Canto, A. Frediani, G.L. Ghiringhelli, M. Terraneo, The lifting system of a Prandtl Plane, Part 1: design and analysis of a light alloy structural solution, in: G. Buttazzo, A. Frediani (Eds.), Variational Analysis and Aerospace Engineering: Mathematical Challenges for Aerospace Design, Springer Optimization and its Applications, vol. 66, Springer US, 2012, pp. 211–234, http://dx.doi.org/10.1007/978-1-4614–2435-2_9. W. P. Henderson, J. K. Huffman, Aerodynamic characteristics of a tandem wing configuration at a Mach number of 0.30, Technical Memorandum TM X-72779, NASA, NASA Langley Research Center, 1975. P. Gall, An experimental and theoretical analysis of the aerodynamic characteristics of a biplane-winglet configuration, Technical Memorandum 85815, NASA, N84-28779, 1984. Gall, 1987, Aerodynamic characteristics of biplanes with winglets, J. Aircr., 24, 518, 10.2514/3.45470 F. Sterk, E. Torenbeek, N.A. of Aeronautical Engineers, D. U. of Technology. Students Society ‘Leonardo da Vinci’., Unconventional Aircraft Concepts: Papers Presented at a Symposium, Delft University Press, 1987 Lange, 1988, Review of unconventional aircraft design concepts, J. Aircr., 25, 385, 10.2514/3.45592 T. Bagwill, B.P. Selberg, Aerodynamic investigation of joined wing configurations for transport aircraft, in: AIAA Applied Aerodynamics Meeting, no. AIAA-96-2373, New Orleans, Louisiana, 1996 http://dx.doi.org/10.2514/6.1997-37. T. Bagwill, B. Selberg, Aerodynamic investigation of twist and cant angles for joined wing transport aircraft, in: 35th Aerospace Sciences Meeting & Exhibit, no. AIAA 97-0037, Reno, 1997 http://dx.doi.org/10.2514/6.1997-37. K.C. Martin, B.G. McKay, Environmentally responsible aviation advanced subsonic transport study and conceptual design of a subscale testbed vehicle, Contractor Report NASA-CR-2012, Lockheed Martin, NASA , 2012. Jansen, 2010, Aerostructural optimization of nonplanar lifting surfaces, J. Aircr., 5, 1490, 10.2514/1.44727 R. Perez, P. Jansen, J. Martins, Aero-structural optimization of non-planar lifting surface configurations, in: 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, no. AIAA 2008-5967, Victoria, Canada, 2008. P. Jansen, R. Perez, Effect of size and mission requirements on the design optimization of non-planar aircraft configurations, in: 13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference, no. AIAA 2010-9188, 2010 http://dx.doi.org/10.2514/6.2010–9188. S. A. Andrews, R. E. Perez, Stability and control effects on the design optimization of a box-wing aircraft, in: 14th AIAA Aviation Technology, Integration, and Operations Conference, no. AIAA 2014-2592, 2014 http://dx.doi.org/10.2514/6.2014–2592. Hicken, 2010, Induced-drag minimization of nonplanar geometries based on the Euler equations, AIAA J., 48, 2564, 10.2514/1.J050379 H. Gagnon, D.W. Zingg, High-fidelity aerodynamic shape optimization of unconventional aircraft through axial deformation, in: 52nd Aerospace Sciences Meeting, AIAA Science and Technology Forum and Exposition (SciTech2014), no. AIAA 2014-0908, National Harbor, Maryland, 2014 http://dx.doi.org/10.2514/6.2014–0908. H. Gagnon, D.W. Zingg, Aerodynamic Optimization Trade Study of a Box-Wing Aircraft Configuration, Journal of Aircraft, Vol. 53, No. 4 (2016), pp. 971–981. 10.2514/1.C033592. F.A. Khan, P. Krammer, D. Scholz, Preliminary aerodynamic investigation of box-wing configurations using low fidelity codes, in: Deutscher Luft- und Raumfahrtkongress 2010, DGLR, Tagungsband - Manuskripte, 2010. F.A. Khan, Preliminary aerodynamic investigation of box-wing configuration using low fidelity codes (Master's Thesis), Luleå University of Technology, Department of Space Science, Kiruna, 2010. URL 〈http://epubl.ltu.se/1653–0187/2010/042/〉. D. Schiktanz, D. Scholz, Box wing fundamentals – an aircraft design perspective, in: 60th Deutscher Luft- und Raumfahrtkongress, Bremen, Germany, DGLR, 2011, pp. 601–615. R. Caja, D. Scholz, Box wing flight dynamics in the stage of conceptual aircraft design, in: 61th Deutscher Luft- und Raumfahrtkongress, Estrel Berlin, Germany, DGLR, 2012, pp. 1–15. D. Schiktanz, D. Scholz, The conflict of aerodynamic efficiency and static longitudinal stability of box wing aircraft, in: 3rd CEAS Air&Space Conference, 21st AIDAA Congress, Venice, Italy, 2011, pp. 910–921, ISBN: 978-88-96427-18-7. P. O. Jemitola, J. P. Fielding, Box wing aircraft conceptual design, in: 28th International Congress of the Aeronautical Sciences, 2012. P.O. Jemitola, Conceptual design and optimization methodology for box wing aircraft (Ph.D. Thesis), School of Aerospace Engineering, Cranfield University, 2012. URL 〈https://dspace.lib.cranfield.ac.uk/handle/1826/7938〉. Jemitola, 2013, Tip fin inclination effect on structural design of a box-wing aircraft, Proc. Inst. Mech. Eng., Part G, J. Aerosp. Eng., 227, 175, 10.1177/0954410011426528 Jemitola, 2013, Wing mass estimation algorithm for medium range box wing aircraft, Aeronaut. J., 117, 329, 10.1017/S0001924000008022 M. Barcala, C.-R. C., S. del Giudice, F. Gandía-Agüera, A. Rodríguez-Sevillano, Experimental investigation on box-wing configuration for UAS, in: 26th Bristol International Unmanned Air Vehicle Systems Conference, Bristol, UK, 2011. M. Ángel Barcala-Montejano, Ángel Antonio Rodríguez-Sevillano, M.E. Rodríguez-Rojo, S. Morales-Serrano, A wind tunnel two-dimensional parametric investigation of biplane configurations, J. Mech. Eng. Autom. 4 (2014) 412–421 URL 〈http://www.davidpublishing.com/show.html?16626〉. M. Martinez, C. Cuerno, Preliminary aerodynamic investigation of an unmanned box-wing aircraft, in: 28th International Congress of the Aeronautical Sciences, ICAS2012, 2012. C. Galiński, Results of testing of models of joined-wing utility class aircraft, SAE Technical Paper 921013, 2014. http://dx.doi.org/10.4271/921013 C. Galinski, J. Hadjuk, M. Kalinowski, M. Wichulski, L. Stefanek, Inverted joined wing scaled demonstrator programme, in: 29th Congress of the International Council of the Aeronautical Sciences, St. Petersburg, Russia, 2014. A. Frediani, New large aircraft, EU Patent 0716978B1, March 2002. A. Frediani, Velivolo biplano ad ali contrapposte, Italian Patent FI 2003A000043, February 2003. A. Frediani, Swept-wing box-type aircraft with high flight static stability, WO Patent App. PCT/IT2004/000,071, February 2004. URL 〈http://www.google.fm/patents/US20060144991?cl=en〉. ACARE, Strategic research agenda, vol. 1, October 2002. URL 〈http://ec.europa.eu/research/transport/pdf/acare_strategic_research_en.pdf〉. A. Frediani, The Prandtl Wing, in: Innovative Configurations and Advanced Concepts for Future Civil Aircraft, VKI Lecture Series 2005–2006, Von Karman Institute, 2005, p. [661] p. in various pagings, ISBN: 2-930389-62-1. A. Frediani, E. Rizzo, C. Bottoni, J. Scanu, G. Iezzi, A 250 Passenger Prandtl Plane Transport Aircraft Preliminary Design, Aerotecnica Missili e Spazio (AIDAA) 84 (2005). I.M. Kroo, Nonplanar wing concepts for increased aircraft efficiency, in: E. Torenbeek, H. Deconinck (Eds.), Innovative Configurations and Advanced Concepts for Future Civil Aircraft, Lecture Series of Von Karman Institute of Fluid Dynamics, 2005, p. [661] p. in various pagings, ISBN: 2-930389-62-1. A. Frediani, L.B. Crema, G. Chiocchia, G. Ghiringhelli, L. Morino, Development of an innovative configuration for transport aircraft. A project of five Italian universities, in: XVII Congresso Nazionale AIDAA (17th National Congress AIDAA), Roma, 2003, pp. 2089–2104. A. Frediani, M. Gasperini, G. Saporito, A. Rimondi, Development of a PrandtlPlane aircraft configuration, in: XVII Congresso Nazionale AIDAA (17th National Congress AIDAA), Roma, 2003, pp. 2089–2104. G. Fumia, F. Sorgonà, Generatore dinamico per lo sviluppo e l′ottimizzazione di un velivolo non convenzionale (Master's Thesis), Ingegneria Aerospaziale, Università di Pisa, November 2000 (in Italian). A. Rimondi, Generazione di configurazioni aerodinamiche mediante NURBS (non-uniform rational b-splines) (Master's Thesis), Dipartimento di Ingegneria Aerospaziale, Università di Pisa, February 2004 (in Italian). URL 〈https://etd.adm.unipi.it/t/etd-02042004-175801/〉. F. Petri, Sviluppo del codice A.S.D. per la generazione parametrica di superfici aerodinamiche mediante N.U.R.B.S. (non-uniform rational b-splines) (Master's Thesis), Dipartimento di Ingegneria Aerospaziale, Università di Pisa, October 2005 (in Italian). URL 〈https://etd.adm.unipi.it/t/etd-09092005-093949/〉. R. Cavallaro, A code for surface modeling and grid generation coupled to a panel method for aerodynamic configuration design (Master's Thesis), Universitià di Pisa, 2009. URL 〈http://etd.adm.unipi.it/t/etd-02102009-175411/〉. R. Cavallaro, A. Frediani, A code for shape generation and aerodynamic design of aircraft, in: G. Buttazzo, A. Frediani (Eds.), Variational Analysis and Aerospace Engineering: Mathematical Challenges for Aerospace Design, Springer Optimization and its Applications, vol. 66, Springer US, 2012, pp. 117–139, 〈http://dx.doi.org/10.1007/978-1-4614–2435-2_6. G. Bernardini, A. Frediani, L. Morino, Aerodynamics for MDO of an innovative configuration, no. RTO Meeting Proceedings 35, Research and Technology Organization, RTO AVT Symposium on Aerodynamic Design and Optimisation of Flight Vehicles in a Concurrent Multi-Disciplinary Environment (Symposium of the Applied Vehicle Technology Panel), Ottawa, Canada, 1999. Morino, 2006, Multi-disciplinary optimization for the conceptual design of innovative aircraft configurations, CMES: Comput. Model. Eng. Sci., 13, 1 A. Catapano, Dimensionamento preliminare di una sezione di fusoliera di un velivolo da oltre 1000 passeggeri (Master's Thesis), Universit di Pisa, October 2010 (in Italian). URL 〈http://etd.adm.unipi.it/theses/available/etd-09242009-124204/〉. F. Oliviero, A. Frediani, Conceptual design of a very large PrandtlPlane freighter, in: G. Buttazzo, A. Frediani (Eds.), Variational Analysis and Aerospace Engineering: Mathematical Challenges for Aerospace Design, Springer Optimization and its Applications, vol. 66, Springer US, 2012, pp. 305–321 http://dx.doi.org/10.1007/978-1-4614–2435-2_13. F. Oliviero, Conceptual design of a large PrandtlPlane freighter (Master's Thesis), Università di Pisa, July 2010. URL 〈http://etd.adm.unipi.it/t/etd-06242010-000726/〉. F. Oliviero, A. Frediani, E. Rizzo, Design of an airfreight system based on an innovative PrandtlPlane aircraft, in: 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, no. AIAA2015-1186, AIAA SciTech, Kissimmee, Florida, 2015 http://dx.doi.org/10.2514/6.2015–1186. F. Oliviero, Preliminary design of a very large PrandlPlane freighter and airport network analysis (Ph.D. Thesis), Università di Pisa, December 2015. URL 〈https://etd.adm.unipi.it/theses/available/etd-12152015-103232/〉. L. Cappelli, V. Cipolla, G. Costa, A. Frediani, F. Oliviero, E. Rizzo, Aerodynamic optimization of a large Prandtlplane configuration, in: 23rd Conference of the Italian Association of Aeronautics and Astronautics, AIDAA, 2015 URL 〈www.aidaa2015.it〉. L. Cappelli, G. Costa, Aerodynamic optimization of a large PrandtlPlane configuration (Master's Thesis), Università di Pisa, March 2015. L. Chiavacci, Progetto aerodinamico preliminare di un velivolo ultraleggero tipo PrandtlPlane (Master's Thesis), Università di Pisa, 2006 (in Italian). URL 〈http://etd.adm.unipi.it/theses/available/etd-05182006-100548/〉. V. Cipolla, S. Giuffrida, Utilizzo di codici a pannelli nel progetto preliminare di velivoli prandtlplane ultraleggeri; applicazione a nuove configurazioni (Master's Thesis), Università di Pisa, October 2006 (in Italian). URL 〈http://etd.adm.unipi.it/t/etd-09042006-105014/〉. G. Chiocchia., G. Iuso, E. Carrera, A. Frediani, A wind tunnel model of a ulm configuration of PrandtlPlane: design, manufacturing and aerodynamic testing, XVII Congresso Nazionale AIDAA (17th National Congress AIDAA), Rome, 2003, pp. 2089–2104. A. Frediani, E. Rizzo, V. Cipolla, L. Chiavacci, C. Bottoni, J. Scanu, G. Iezzi, Development of ULM PrandtlPlane aircraft and flight tests on scaled models, in: XIX AIDAA Congress, Forlì, Italy, 2007. E. Rizzo, A. Frediani, Application of optimisation algorithms to aircraft aerodynamics, in: G. Buttazzo, A. Frediani (Eds.), Variational Analysis and Aerospace Engineering, Springer Optimization and its Applications, vol. 33, Springer, New York, 2009, pp. 419–446 http://dx.doi.org/10.1007/978-0-387-95857-6_23. E. Rizzo. Optimization Methods Applied to the preliminary design of innovative non conventional aircraft configurations, Edizioni ETS 2009.URL 〈http://books.google.com/books?id=bSCv_8FIOFMC〉 G. Iezzi, PrandtlPlane high lift system preliminary aerodynamic design (Master's Thesis), Università di Pisa, 2006. URL 〈http://etd.adm.unipi.it/t/etd-09222006-113301/〉. C. Bottoni, J. Scanu, Preliminary design of a 250 passenger PrandtlPlane aircraft (Master's Thesis), University of Pisa, 2004. URL 〈http://etd.adm.unipi.it/theses/available/etd-09072004-140314/〉. M. Bernardini, Dimensionamento strutturale preliminare di un segmento di fusoliera di un velivolo PrandtlPlane (M.Sc. Thesis), University of Pisa. Title translation: “Preliminary Structural Sizing of a PrandtlPlaneaposs Fuselage Segment”, 2004 (in Italian). URL 〈http://etd.adm.unipi.it/theses/available/etd-01262005-154639/〉. F. Pierotti, Progetto e dimensionamento strutturale preliminari del tronco posteriore di fusoliera di un velivolo PrandtlPlane (Master's Thesis), Università di Pisa, November 2004. URL 〈http://etd.adm.unipi.it/theses/available/etd-11092006-161941/〉. C. Dimartino, M. Baldini, Analisi agli elementi finiti di un tronco di fusoliera di un velivolo PrandtlPlane sottoposto a carichi limite di pressurizzazione e di massa. (Master's Thesis), Università di Pisa, 2009. URL 〈http://etd.adm.unipi.it/theses/available/etd-02122009-154105/〉. D. Dal Canto, Progetto preliminare del cassone alare di un velivolo di tipo Prandtl-Plane mediante l′applicazione di un metodo di ottimizzazione strutturale (Master's Thesis), Dipartimento di Ingegneria Aerospaziale, Università di Pisa, Advisor: A. Frediani, December 2009. URL 〈http://etd.adm.unipi.it/t/etd-11132009-090836/〉. A. Frediani, F. Quattrone, F. Contini, The lifting system of a PrandtlPlane, part 3: Structures made in composites, in: G. Buttazzo, A. Frediani (Eds.), Variational Analysis and Aerospace Engineering: Mathematical Challenges for Aerospace Design, Springer Optimization and its Applications, vol. 66, Springer US, 2012, pp. 269–288 http://dx.doi.org/10.1007/978-1-4614–2435-2_11. F. Quattrone, F. Contini, Preliminary design and fem analysis of a new conception non-standard wing structure: the prandtlplane 250 wing structure (Master's Thesis), Dipartimento di Ingegneria Aerospaziale, Università di Pisa, October 2010. URL 〈http://etd.adm.unipi.it/t/etd-09222010-151820/〉. N. Divoux, Preliminary study on flutter characteristics of a PrandtlPlane aircraft (Master's Thesis), TU Delft, 2008. R. Cavallaro, R. Bombardieri, S. Silvani, L. Demasi, G. Bernardini, Aeroelasticity of the PrandtlPlane: body freedom flutter, freeplay and limit cycle oscillation, in: A. Frediani (Ed.), Variational Analysis and Aerospace Engineering III: Mathematical Challenges for the Aerospace of the Future, Springer U.S., 2017, to appear. R. Bombardieri, R. Cavallaro, L. Demasi, A historical perspective on the aeroelasticity of Box Wings and PrandtlPlane with new findings, 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, no. AIAA 2016-0238, AIAA SciTech, San Diego, California, 2016 http://dx.doi.org/http://dx.doi.org/10.2514/6.2016–0238. M. Voskuijl, J. Klerk, D. Ginneken, Flight mechanics modeling of the PrandtlPlane for conceptual and preliminary design, in: G. Buttazzo, A. Frediani (Eds.), Variational Analysis and Aerospace Engineering: Mathematical Challenges for Aerospace Design, Springer Optimization and Its Applications, Springer US, 2012, pp. 435–462 http://dx.doi.org/10.1007/978-1-4614–2435-2_19. D.A.J. Ginneken, M. Voskuijl, M.J.L. Van Tooren, A. Frediani, Automated Control Surface Design and Sizing for the PrandtlPlane, in: 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, no. AIAA 2010-3060, Orlando, Florida, 2010 http://dx.doi.org/10.2514/6.2010–3060. D. V. Ginneken, Automated control surface design and sizing for the PrandtlPlane (Master's Thesis), TU Delft, April 2009. N. Beccasio, M. Tesconi, A. Frediani, Prandtlplane propelled with liquid hydrogen: A preliminary study, in: G. Buttazzo, A. Frediani (Eds.), Variational Analysis and Aerospace Engineering: Mathematical Challenges for Aerospace Design, Springer Optimization and its Applications, Springer US, 2012, pp. 1–25 http://dx.doi.org/10.1007/978-1-4614–2435-2_1. M. Tesconi, N. Beccasio, Studio preliminare di un velivolo non convenzionale di tipo PrandtlPlane propulso a idrogeno liquido (Master's Thesis), Università di Pisa, 2009 (in Italian). See also http://etd.adm.unipi.it/t/etd-06242009-193157/. URL http://etd.adm.unipi.it/t/etd-11112009-173228/ A. Frediani, V. Cipolla, F. Oliviero, E. Rizzo, R. Cavallaro, Convertiplano a doppia ala mobile, Italian Patent PI2015A000015, February 2015. Frediani, 2015, IDINTOS, Aerotec. Missili Spaz., J. Aerosp. Sci., Technol. Syst., 94, 100 Hilton, 2013, Lighter, stronger, safer, AIAA Aerosp. Am., 10 Hilton, 2014, Research seeks lighter, more versatile structures, AIAA Aerosp. Am., 16 A. Frediani, V. Cipolla, F. Oliviero, Design of a prototype of light amphibious PrandtlPlane, 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, no. AIAA2015-0700, AIAA SciTech, Kissimmee, Florida, 2015 http://dx.doi.org/10.2514/6.2015–0700. V. Cipolla, A. Frediani, F. Oliviero, M. Pinucci, E. Rizzo, R. Rossi, Ultralight amphibious PrandPrandtl: the final design, in: XXII Conference of Italian Association of Aeronautics and Astronautics, Napoli, Italy, 2013. A. Viti, CFD aerodynamic design of an ultra-light amphibious PrandtPlane aircraft (Master's Thesis), Università di Pisa, November 2013. URL 〈https://etd.adm.unipi.it/t/etd-11062012-172107/〉. E. Maggiari, Aerodynamic cfd analysis of the innovative amphibious aircraft of the IDINTOS project (Master's Thesis), Università degli Studi di Pisa, October 2013. URL 〈http://etd.adm.unipi.it/t/etd-05102013-191036/〉. V. Cipolla, A. Frediani, F. Oliviero, G. Gibertini, Ultralight amphibious PrandPrandtl: wind tunnel tests, in: XXII Conference of Italian Association of Aeronautics and Astronautics, Napoli, Italy, 2013. S. Luci, Utilizzo del codice STAR-CCM+ nello studio delle manovre di decollo ed atterraggio di un idrovolante ultraleggero Prandtlplane (Master's Thesis), Università degli Studi di Pisa, June 2012 (in Italian). URL 〈https://etd.adm.unipi.it/t/etd-05222012-161321/〉. A. Frediani, M. Lucchesi, T. Lippi, CFD hydrodynamic analysis of an ultralight amphibious PrandtlPlane, in: 3rd CEAS 3rd Air and Space Conference – XXI AIDAA Congress, Venezia, Italy, 2011. M. Lucchesi, T. Lippi, Progetto concettuale e analisi CFD di uno scafo per anfibio PrandtlPlane ultraleggero (Master's Thesis), Universit degli Studi di Pisa, November 2011 (in Italian). URL 〈https://etd.adm.unipi.it/t/etd-11102011-192609/〉. V. Cipolla, F. Di Ció, A. Frediani, F. Oliviero, M. Roccaldo, R. Rossi, An ultralight amphibious PrandPrandtl: towing tank tests on a scaled model, in: XXII Conference of Italian Association of Aeronautics and Astronautics, Napoli, Italy, 2013. M. Bugossi, Prove sperimentali e analisi CFD della manovra di decollo di un idrovolante ultraleggero prandtlplane (Master's Thesis), Università degli Studi di Pisa, 2014 (in Italian). URL 〈https://etd.adm.unipi.it/t/etd-02132014-103909/〉. SkyBox Engineering, PrandtlPlane Flight Tests, last seen online on 02/02/2016, July 2014. URL 〈https://www.youtube.com/watch?v=zDp-AZ1fSzg〉. A. Santarini, Analisi strutturale di sistemi portanti “boxwing” di velivoli ultraleggeri (Master's Thesis), Università degli Studi di Pisa, Luglio 2013 (in Italian). URL 〈https://etd.adm.unipi.it/t/etd-06192013-230347/〉. L. Menna, Progetto preliminare di eliche libere e intubate per velivoli ultraleggeri (Master's Thesis), Università degli Studi di Pisa, March 2014 (in Italian). URL 〈https://etd.adm.unipi.it/t/etd-02132014-110836/〉. M. Muscolo, Progetto di un carrello principale retrattile per un velivolo anfibio ultraleggero (Master's Thesis), Università degli Studi di Pisa, 2013 (in Italian). URL 〈https://etd.adm.unipi.it/t/etd-02092013-170820/〉. S. Rethorst, P. Saffman, T. Fujita, Induced Drag Elimination on Subsonic Aircraft, Technical Report TR-66- 115, AFFDL, December 1966. M. Panaro, A. Frediani, F. Giannessi, E. Rizzo, Variational approach to the problem of the minimum induced drag of wings, in: Variational Analysis and Aerospace Engineering, Springer Optimization and its Applications, vol. 33, Springer, New York, 2009, pp. 313–342. http://dx.doi.org/10.1007/978-0-387-95857-6_17 A.F. Montanari, M. Pappalardo, Sul problema di Prandtl della minima resistenza indotta di un sistema portante, AIDAA, 1999, pp. 267–278 (Translated: On Prandtl's problem about minimization of induced drag of a lifting system). A. Frediani, G. Montanari, Best wing system: an exact solution of the Prandtl's problem, in: Variational Analysis and Aerospace Engineering, Springer Optimization and its Applications, vol. 33, Springer, New York, 2009, pp. 183–211. URL 10.1007/978-0-387-95857-6_11. L. Demasi, G. Monegato, R. Cavallaro, Minimum induced drag theorems for nonplanar systems and closed wings, in: A. Frediani (Ed.), Variational Analysis and Aerospace Engineering III: Mathematical Challenges for the Aerospace of the Future, Springer U.S., 2017, to appear. J. DeYoung, Induced drag ideal efficiency factor of arbitrary lateral-vertical wing forms, CR 3357, NASA, 1980. G. Bernardini, Problematiche aerodinamiche relative alla progettazione di configurazioni innovative (Ph.D. Thesis), Politecnico di Milano, November 1999. J. C. Schirra, J. H. Watmuff, M. Bauschat, Highly non-planar lifting systems: A relative assessment of existing potential-methodologies to accurately estimate the induced drag, in: 32nd AIAA Applied Aerodynamics Conference, AIAA, Atlanta, GA, 2014. http://dx.doi.org/10.2514/6.2014–2988. URL 〈http://arc.aiaa.org/doi/abs/10.2514/6.2014–2988〉. Wolkovitch, 1979, Subsonic VSTOL aircraft configurations with tandem wings, J. Aircr., 16, 605, 10.2514/3.58574 R. Cavallaro, M. Nardini, L. Demasi, Amphibious PrandtlPlane: Preliminary design aspects including propellers integration and ground effect, in: 2nd SciTech2015, no. AIAA-2015–1185, Kissimmee, Florida, 2015. http://dx.doi.org/10.2514/6.2015–1185. http://arc.aiaa.org/doi/abs/10.2514/6.2015–1185 Bernardini, 2013, Analysis of a structural-aerodynamic fully-coupled formulation for aeroelastic response of rotorcraft, Aerosp. Sci. Technol., 29, 175, 10.1016/j.ast.2013.03.002 Muhlpacher, Bruti, Prandtl box wing layout application to UAV configuration: wind tunnel computational data comparison, in: Aerospace Aerodynamics Research Conference, Royal Aeronautical Society, London, UK, 2003. D. Zanetti, Studio preliminare della dinamica libera e delle qualità di volo della configurazione prandtlplane (Master's Thesis), Università di Pisa, etd-09172014-114441, October 2014 (in Italian). URL 〈https://etd.adm.unipi.it/t/etd-09172014-114441/〉. F. Oliviero, D. Zanetti, V. Cipolla, Flight dynamics model for preliminary design of PrandtlPlane wing configuration with sizing of the control surfaces, in: 23rd Conference of the Italian Association of Aeronautics and Astronautics, AIDAA, 2015. URL 〈https://www.aidaa2015.it〉. F. Paganini, Progetto di un carrello secondario e di un sistema di estrazione di un Fowler flap per un velivolo anfibio ultraleggero (Master's Thesis), Università di Pisa, November 2013 (in Italian). URL 〈https://etd.adm.unipi.it/t/etd-11072013-015509/〉. S. Silvani, Aeroelastic analysis of PrandtlPlane Joined Wings configuration (Master's Thesis), Università degli Studi di Roma 3, March 2015.