Chained Clauser–Horne–Shimony–Holt inequality for Hardy’s ladder test of nonlocality
Tóm tắt
Relativistic causality forbids superluminal signaling between distant observers. By exploiting the non-signaling principle, we derive the exact relationship between the chained Clauser–Horne–Shimony–Holt sum of correlations
$$\text {CHSH}_K$$
and the success probability
$$P_K$$
associated with Hardy’s ladder test of nonlocality for two qubits and
$$K+1$$
observables per qubit. Then, by invoking the Tsirelson bound for
$$\text {CHSH}_K$$
, the derived relationship allows us to establish an upper limit on
$$P_K$$
. In addition, we draw the connection between
$$\text {CHSH}_K$$
and the chained version of the Clauser–Horne (CH) inequality.
Tài liệu tham khảo
Hardy, L.: Quantum mechanics, local realistic theories, and Lorentz-invariant realistic theories. Phys. Rev. Lett. 68, 2981–2984 (1992)
Hardy, L.: Nonlocality for two particles without inequalities for almost all entangled states. Phys. Rev. Lett. 71, 1665–1668 (1993)
Hardy, L.: A bigger contradiction between quantum theory and locality for two particles without inequalities. In: Ferrero, M., Van der Merwe, A. (eds.) New Developments on Fundamental Problems in Quantum Physics, pp. 163–170. Kluwer Academic Publishers, Dordrecht (1997)
Boschi, D., Branca, S., De Martini, F., Hardy, L.: Ladder proof of nonlocality without inequalities: theoretical and experimental results. Phys. Rev. Lett. 79, 2755–2758 (1997)
Mermin, N.D.: Quantum mysteries refined. Am. J. Phys. 62, 880–887 (1994)
Mermin, N.D.: The best version of Bell’s theorem. In: Greenberger D.M., Zeilinger A. (eds.) Fundamental Problems in Quantum Theory: A Conference Held in Honor of Professor John A. Wheeler, Ann. N. Y. Acad. Sci. vol. 755, pp. 616–623 (1995)
Pearle, P.M.: Hidden-variable example based upon data rejection. Phys. Rev. D 2, 1418–1425 (1970)
Braunstein, S.L., Caves, C.M.: Wringing out better Bell inequalities. Ann. Phys. (N. Y.) 202, 22–56 (1990)
Wehner, S.: Tsirelson bounds for generalized Clauser–Horne–Shimony–Holt inequalities. Phys. Rev. A 73, 022110 (2006)
Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969)
Cirel’son, B.S.: Quantum generalizations of Bell’s inequality. Lett. Math. Phys. 4, 93–100 (1980)
Colbeck, R., Renner, R.: Hidden variable models for quantum theory cannot have any local part. Phys. Rev. Lett. 101, 050403 (2008)
Colbeck, R., Renner, R.: No extension of quantum theory can have improved predictive power. Nat. Commun. 2, 411 (2011)
Colbeck, R., Renner, R.: The completeness of quantum theory for predicting measurement outcomes. arxiv:1208.4123
Cereceda, J.L.: Quantum mechanical probabilities and general probabilistic constraints for Einstein–Podolsky–Rosen–Bohm experiments. Found. Phys. Lett. 13, 427–442 (2000)
Xiang, Y.: The relation between Hardy’s non-locality and violation of Bell inequality. Chin. Phys. B 20, 060301 (2011)
Cereceda, J.L.: Identification of all Hardy-type correlations for two photons or particles with spin 1/2. Found. Phys. Lett. 14, 401–424 (2001)
Clauser, J.F., Horne, M.A.: Experimental consequences of objective local theories. Phys. Rev. D 10, 526–535 (1974)
Barbieri, M., Cinelli, C., De Martini, F., Mataloni, P.: Test of quantum nonlocality by full collection of polarization entangled photon pairs. Eur. Phys. J. D 32, 261–267 (2005)
Vallone, G., Gianani, I., Inostroza, E.B., Saavedra, C., Lima, G., Cabello, A., Mataloni, P.: Testing Hardy’s nonlocality proof with genuine energy-time entanglement. Phys. Rev. A 83, 042105 (2011)
Guo, W.J., Fan, D.H., Wei, L.F.: Experimentally testing Bell’s theorem based on Hardy’s nonlocal ladder proofs. Sci. China Phys. Mech. 58, 1–5 (2015)
Yuan, H., Wei, L.-F.: Testing Hardy’s ladder proof of nonlocality by joint measurements of qubits. Quantum Inf. Process. 12, 3341–3352 (2013)
Cereceda, J.L.: Ladder proof of nonlocality for two spin-half particles revisited. J. Phys. A Math. Gen. 35, 9105–9111 (2002)
Cereceda, J.L.: Causal communication constraint for two qubits in Hardy’s ladder proof of non-locality. Adv. Stud. Theor. Phys. 9, 433–448 (2015)
Jones, N.S., Masanes, L.: Interconversion of nonlocal correlations. Phys. Rev. A 72, 052312 (2005)
Popescu, S., Rohrlich, D.: Quantum nonlocality as an axiom. Found. Phys. 24, 379–385 (1994)
Fritz, T.: Quantum analogues of Hardy’s nonlocality paradox. Found. Phys. 41, 1493–1501 (2011)
Lima, G., Inostroza, E.B., Vianna, R.O., Larsson, J.A., Saavedra, C.: Optimal measurement bases for Bell tests based on the Clauser–Horne inequality. Phys. Rev. A 85, 012105 (2012)
Ahanj, A., Kunkri, S., Rai, A., Rahaman, R., Joag, P.S.: Bound on Hardy’s nonlocality from the principle of information causality. Phys. Rev. A 81, 032103 (2010)
Pawłowski, M., Paterek, T., Kaszlikowski, D., Scarani, V., Winter, A., Żukowski, M.: Information causality as a physical principle. Nature (London) 461, 1101–1104 (2009)
Allcock, J., Brunner, N., Pawłowski, M., Scarani, V.: Recovering part of the boundary between quantum and nonquantum correlations from information causality. Phys. Rev. A 80, 040103(R) (2009)
Rabelo, R., Zhi, L.Y., Scarani, V.: Device-independent bounds for Hardy’s experiment. Phys. Rev. Lett. 109, 180401 (2012)
Seshadreesan, K.P., Ghosh, S.: Constancy of maximal nonlocal probability in Hardy’s nonlocality test for bipartite quantum systems. J. Phys. A Math. Theor. 44, 315305 (2011)
Bamps, C., Pironio, S.: Sum-of-squares decompositions for a family of Clauser–Horne–Shimony–Holt-like inequalities and their application to self-testing. Phys. Rev. A 91, 052111 (2015)
Yang, T.H., Navascués, M.: Robust self-testing of unknown quantum systems into any entangled two-qubit states. Phys. Rev. A 87, 050102(R) (2013)
Šupić, I., Augusiak, R., Salavrakos, A., Acín, A.: Self-testing protocols based on the chained Bell inequalities. arxiv:1511.09220