Pin mặt trời perovskite chứa cesium với ba cation: cải thiện độ ổn định, tái tạo và hiệu suất cao

Energy and Environmental Science - Tập 9 Số 6 - Trang 1989-1997
Michael Saliba1,2,3,4,5, Taisuke Matsui6,7,8,9,10, Ji Youn Seo1,2,3,4,5, Konrad Domanski1,2,3,4,5, Juan‐Pablo Correa‐Baena11,12,4, Mohammad Khaja Nazeeruddin13,1,14,4,5, Shaik M. Zakeeruddin1,2,3,4,5, Wolfgang Tress1,2,3,4,5, Antonio Abate1,2,3,4,5, Anders Hagfeldt11,12,4, Michaël Grätzel1,2,3,4,5
1Institute of Chemical Sciences and Engineering
2Laboratory of Photonics and Interfaces
3Lausanne CH-1015
4Switzerland
5École Polytechnique Fédérale de Lausanne
6Advanced Research Division, Materials Research Laboratory, Panasonic Corporation, 1006 Kadoma, Kadoma City, Osaka 571-8501, Japan
7Japan
8Kadoma City
9Materials Research Laboratory
10Panasonic Corporation
111015 Lausanne
12Laboratory of Photomolecular Science (LSPM) École Polytechnique Fédérale de Lausanne (EPFL)
13Group for Molecular Engineering of Functional Materials
14Sion CH-1951

Tóm tắt

Pin mặt trời perovskite tốt nhất ngày nay sử dụng một hỗn hợp formamidinium và methylammonium làm cation đơn giá. Việc bổ sung cesium cải thiện đáng kể các thành phần.

Từ khóa


Tài liệu tham khảo

Kojima, 2009, J. Am. Chem. Soc., 131, 6050, 10.1021/ja809598r

Koh, 2014, J. Phys. Chem. C, 118, 16458, 10.1021/jp411112k

Lee, 2012, Science, 338, 643, 10.1126/science.1228604

Kim, 2012, Sci. Rep., 2, 591, 10.1038/srep00591

Hao, 2014, Nat. Photonics, 8, 489, 10.1038/nphoton.2014.82

Hendon, 2015, J. Mater. Chem. A, 3, 9067, 10.1039/C4TA05284F

Heo, 2014, Adv. Mater., 26, 8179, 10.1002/adma.201403140

Jiang, 2015, Angew. Chem., 54, 7617, 10.1002/anie.201503038

Nagane, 2014, Chem. Commun., 50, 9741, 10.1039/C4CC04537H

Prajongtat, 2015, J. Phys. Chem. C, 119, 9926, 10.1021/acs.jpcc.5b01667

Burschka, 2013, Nature, 499, 316, 10.1038/nature12340

Xiao, 2014, Energy Environ. Sci., 7, 2619, 10.1039/C4EE01138D

Chen, 2014, J. Am. Chem. Soc., 136, 622, 10.1021/ja411509g

Barrows, 2014, Energy Environ. Sci., 7, 2944, 10.1039/C4EE01546K

Sutherland, 2015, Adv. Mater., 27, 53, 10.1002/adma.201403965

Wei, 2014, Angew. Chem., 53, 13239, 10.1002/anie.201408638

Liu, 2013, Nature, 501, 395, 10.1038/nature12509

Malinkiewicz, 2014, Nat. Photonics, 8, 128, 10.1038/nphoton.2013.341

Lin, 2015, Nat. Photonics, 9, 106, 10.1038/nphoton.2014.284

Miyata, 2015, Nat. Phys., 11, U582, 10.1038/nphys3357

Stranks, 2013, Science, 342, 341, 10.1126/science.1243982

Xing, 2013, Science, 342, 344, 10.1126/science.1243167

Dong, 2015, Science, 347, 967, 10.1126/science.aaa5760

Pellet, 2014, Angew. Chem., 53, 3151, 10.1002/anie.201309361

Yang, 2015, Science, 348, 1234, 10.1126/science.aaa9272

Ogomi, 2014, J. Phys. Chem. Lett., 5, 1004, 10.1021/jz5002117

Stoumpos, 2013, Inorg. Chem., 52, 9019, 10.1021/ic401215x

Noh, 2013, Nano Lett., 13, 1764, 10.1021/nl400349b

Xing, 2014, Nat. Mater., 13, 476, 10.1038/nmat3911

Saliba, 2016, Adv. Mater., 28, 923, 10.1002/adma.201502608

Tan, 2014, Nat. Nanotechnol., 9, 687, 10.1038/nnano.2014.149

Saliba, 2015, Adv. Funct. Mater., 25, 5038, 10.1002/adfm.201500669

Zhang, 2013, Nano Lett., 13, 4505, 10.1021/nl4024287

Baena, 2015, Energy Environ. Sci., 8, 2928, 10.1039/C5EE02608C

Albrecht, 2016, Energy Environ. Sci., 9, 81, 10.1039/C5EE02965A

Dong, 2015, Adv. Mater., 27, 1912, 10.1002/adma.201405116

Domanski, 2015, Adv. Funct. Mater., 25, 6936, 10.1002/adfm.201503188

Yakunin, 2015, Nat. Photonics, 9, 444, 10.1038/nphoton.2015.82

Conings, 2015, Adv. Energy Mater., 5, 10.1002/aenm.201500477

Misra, 2015, J. Phys. Chem. Lett., 6, 326, 10.1021/jz502642b

Hoke, 2015, Chem. Sci., 6, 613, 10.1039/C4SC03141E

Shockley, 1961, J. Appl. Phys., 32, 510, 10.1063/1.1736034

Eperon, 2014, Energy Environ. Sci., 7, 982, 10.1039/c3ee43822h

Lee, 2014, Adv. Mater., 26, 4991, 10.1002/adma.201401137

Jeon, 2015, Nature, 517, 476, 10.1038/nature14133

Kulbak, 2015, J. Phys. Chem. Lett., 6, 2452, 10.1021/acs.jpclett.5b00968

Moller, 1958, Nature, 182, 1436, 10.1038/1821436a0

Bekenstein, 2015, J. Am. Chem. Soc., 137, 16008, 10.1021/jacs.5b11199

Saliba, 2016, Nature Energy, 1, 15017, 10.1038/nenergy.2015.17

Bi, 2016, Sci. Adv., 2, e1501170, 10.1126/sciadv.1501170

Amat, 2014, Nano Lett., 14, 3608, 10.1021/nl5012992

Choi, 2014, Nano Energy, 7, 80, 10.1016/j.nanoen.2014.04.017

Lee, 2015, Adv. Energy Mater., 5, 10.1002/aenm.201501310

Yi, 2016, Energy Environ. Sci., 9, 656, 10.1039/C5EE03255E

McMeekin, 2016, Science, 351, 151, 10.1126/science.aad5845

Li, 2016, Chem. Mater., 28, 284, 10.1021/acs.chemmater.5b04107

Goldschmidt, 1926, Die Naturwissenschaften, 14, 477, 10.1007/BF01507527

Giordano, 2016, Nat. Commun., 7, 10379, 10.1038/ncomms10379

Li, 2016, Energy Environ. Sci., 10.1039/C5EE03229F

Unger, 2014, Energy Environ. Sci., 7, 3690, 10.1039/C4EE02465F

Christians, 2015, J. Phys. Chem. Lett., 6, 852, 10.1021/acs.jpclett.5b00289

Abate, 2015, Energy Environ. Sci., 8, 2946, 10.1039/C5EE02014J

Bush, 2016, Adv. Mater., 10.1002/adma.201505279

Chen, 2015, Science, 350, 944, 10.1126/science.aad1015