Certifying Fully Dynamic Algorithms for Recognition and Hamiltonicity of Threshold and Chain Graphs
Tóm tắt
Từ khóa
Tài liệu tham khảo
Beisegel, J., Chiarelli, N., Köhler, E., Krnc, M., Milanič, M., Pivač, N., Scheffler, R., Strehler, M.: Edge elimination and weighted graph classes. In: Adler, I., Müller, H. (eds.) Graph-Theoretic Concepts in Computer Science, LNCS, vol. 12301, pp. 134–147. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60440-0_11
Bhattacharya, S., Henzinger, M., Nanongkai, D.: New deterministic approximation algorithms for fully dynamic matching. In: Proceedings of the Forty-Eighth Annual ACM Symposium on Theory of Computing, pp. 398–411 (2016). https://doi.org/10.1145/2897518.2897568
Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. SIAM (1999). https://doi.org/10.1137/1.9780898719796
Calamoneri, T., Monti, A., Petreschi, R.: Fully dynamically maintaining minimal integral separator for threshold and difference graphs. In: WALCOM: Algorithms and Computation, LNCS, vol. 9627, pp. 313–324. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30139-6_25
Chvátal, V., Hammer, P.L.: Set-packing and threshold graphs. Tech. Rep. CORR 73-21, University of Waterloo (1973)
Chvátal, V., Hammer, P.L.: Aggregations of inequalities in integer programming. Stud. Integ. Program. Ann. Discrete Math. 1, 145–162 (1977)
Cozzens, M.B., Leibowitz, R.: Threshold dimension of graphs. SIAM J. Algebr. Discrete Methods 5, 579–595 (1984). https://doi.org/10.1137/0605055
Cozzens, M.B., Leibowitz, R.: Multidimensional scaling and threshold graphs. J. Math. Psychol. 31, 179–191 (1987). https://doi.org/10.1016/0022-2496(87)90014-9
Crespelle, C., Paul, C.: Fully dynamic algorithm for recognition and modular decomposition of permutation graphs. Algorithmica 58(2), 405–432 (2010). https://doi.org/10.1007/s00453-008-9273-0
Frigioni, D., Marchetti-Spaccamela, A., Nanni, U.: Fully dynamic shortest paths in digraphs with arbitrary arc weights. J. Algorithms 49(1), 86–113 (2003). https://doi.org/10.1016/S0196-6774(03)00082-8
Hammer, P.L., Peled, U.N., Sun, X.: Difference graphs. Discrete Appl. Math. 28(1), 35–44 (1990). https://doi.org/10.1016/0166-218X(90)90092-Q
Harary, F., Peled, U.: Hamiltonian threshold graphs. Discrete Appl. Math. 16, 11–15 (1987). https://doi.org/10.1016/0166-218X(87)90050-3
Heggernes, P., Kratsch, D.: Linear-time certifying recognition algorithms and forbidden induced subgraphs. Nordic J. Comput. 14(1–2), 87–108 (2007)
Heggernes, P., Papadopoulos, C.: Single-edge monotonic sequences of graphs and linear-time algorithms for minimal completions and deletions. In: International Computing and Combinatorics Conference, pp. 406–416. Springer (2007). https://doi.org/10.1007/978-3-540-73545-8_40
Heggernes, P., Papadopoulos, C.: Single-edge monotonic sequences of graphs and linear-time algorithms for minimal completions and deletions. Theor. Comput. Sci. 410(1), 1–15 (2009). https://doi.org/10.1016/j.tcs.2008.07.020
Hell, P., Shamir, R., Sharan, R.: A fully dynamic algorithm for recognizing and representing proper interval graphs. SIAM J. Comput. 31(1), 289–305 (2002). https://doi.org/10.1137/S0097539700372216
Henderson, P.B., Zalcstein, Y.: A graph-theoretic characterization of the $$\text{ PV}_{\text{ chunk }}$$ class of synchronizing primitives. SIAM J. Comput. 6(1), 88–108 (1977). https://doi.org/10.1137/0206008
Henzinger, M.R.: Fully dynamic biconnectivity in graphs. Algorithmica 13(6), 503–538 (1995). https://doi.org/10.1007/BF01189067
Henzinger, M.R., Fredman, M.L.: Lower bounds for fully dynamic connectivity problems in graphs. Algorithmica 22(3), 351–362 (1998). https://doi.org/10.1007/PL00009228
Ibarra, L.: Fully dynamic algorithms for chordal graphs and split graphs. ACM Trans. Algorithms 4(4), 1–40 (2008). https://doi.org/10.1145/1383369.1383371
Klein, P.N., Subramanian, S.: A fully dynamic approximation scheme for shortest paths in planar graphs. Algorithmica 22(3), 235–249 (1998). https://doi.org/10.1007/PL00009223
Koop, G.J.: Cyclic scheduling of offweekends. Oper. Res. Lett. 4, 259–263 (1986). https://doi.org/10.1016/0167-6377(86)90026-X
Mahadev, N.V.R., Peled, U.N.: Threshold Graphs and Related Topics. Annals of Discrete Mathematics, vol. 56. North-Holland Publishing Co., Amsterdam (1995)
Ordman, E.T.: Threshold coverings and resource allocation. In: Proceedings of the 16th Southeastern Conference on Combinatorics, Graph Theory, and Computing, pp. 99–113. Utilitas Mathematica Pub., Winnipeg (1985)
Ordman, E.T.: Minimal threshold separators and memory requirements for synchronization. SIAM J. Comput. 18(1), 152–165 (1989). https://doi.org/10.1137/0218010
Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination on graphs. SIAM J. Comput. 5(2), 266–283 (1976). https://doi.org/10.1137/0205021
Shamir, R., Sharan, R.: A fully dynamic algorithm for modular decomposition and recognition of cographs. Discrete Appl. Math. 136(2–3), 329–340 (2004). https://doi.org/10.1016/S0166-218X(03)00448-7
Soulignac, F.J.: Fully dynamic recognition of proper circular-arc graphs. Algorithmica 71(4), 904–968 (2015). https://doi.org/10.1007/s00453-013-9835-7
Thorup, M.: Near-optimal fully-dynamic graph connectivity. In: Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, pp. 343–350 (2000). https://doi.org/10.1145/335305.335345