Certifying Fully Dynamic Algorithms for Recognition and Hamiltonicity of Threshold and Chain Graphs

Springer Science and Business Media LLC - Tập 85 Số 8 - Trang 2454-2481 - 2023
Jesse Beisegel1, Ekkehard Köhler1, Robert Schleicher1, Martin Strehler2
1Institute of Mathematics, Brandenburg University of Technology, Cottbus, Germany
2Department of Mathematics, Westsächsische Hochschule Zwickau, Zwickau, Germany

Tóm tắt

AbstractSolving problems on graphs dynamically calls for algorithms to function under repeated modifications to the graph and to be more efficient than solving the problem for the whole graph from scratch after each modification. Dynamic algorithms have been considered for several graph properties, for example connectivity, shortest paths and graph recognition. In this paper we present fully dynamic algorithms for the recognition of threshold graphs and chain graphs, which are optimal in the sense that the costs per modification are linear in the number of modified edges. Furthermore, our algorithms also consider the addition and deletion of sets of vertices as well as edges. In the negative case, i.e., where the graph is not a threshold graph or chain graph anymore, our algorithms return a certificate of constant size. Additionally, we present optimal fully dynamic algorithms for the Hamiltonian cycle problem and the Hamiltonian path problem on threshold and chain graphs which return a vertex cutset as certificate for the non-existence of such a path or cycle in the negative case.

Từ khóa


Tài liệu tham khảo

Beisegel, J., Chiarelli, N., Köhler, E., Krnc, M., Milanič, M., Pivač, N., Scheffler, R., Strehler, M.: Edge elimination and weighted graph classes. In: Adler, I., Müller, H. (eds.) Graph-Theoretic Concepts in Computer Science, LNCS, vol. 12301, pp. 134–147. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60440-0_11

Bhattacharya, S., Henzinger, M., Nanongkai, D.: New deterministic approximation algorithms for fully dynamic matching. In: Proceedings of the Forty-Eighth Annual ACM Symposium on Theory of Computing, pp. 398–411 (2016). https://doi.org/10.1145/2897518.2897568

Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. SIAM (1999). https://doi.org/10.1137/1.9780898719796

Calamoneri, T., Monti, A., Petreschi, R.: Fully dynamically maintaining minimal integral separator for threshold and difference graphs. In: WALCOM: Algorithms and Computation, LNCS, vol. 9627, pp. 313–324. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30139-6_25

Chvátal, V., Hammer, P.L.: Set-packing and threshold graphs. Tech. Rep. CORR 73-21, University of Waterloo (1973)

Chvátal, V., Hammer, P.L.: Aggregations of inequalities in integer programming. Stud. Integ. Program. Ann. Discrete Math. 1, 145–162 (1977)

Cozzens, M.B., Leibowitz, R.: Threshold dimension of graphs. SIAM J. Algebr. Discrete Methods 5, 579–595 (1984). https://doi.org/10.1137/0605055

Cozzens, M.B., Leibowitz, R.: Multidimensional scaling and threshold graphs. J. Math. Psychol. 31, 179–191 (1987). https://doi.org/10.1016/0022-2496(87)90014-9

Crespelle, C., Paul, C.: Fully dynamic algorithm for recognition and modular decomposition of permutation graphs. Algorithmica 58(2), 405–432 (2010). https://doi.org/10.1007/s00453-008-9273-0

Frigioni, D., Marchetti-Spaccamela, A., Nanni, U.: Fully dynamic shortest paths in digraphs with arbitrary arc weights. J. Algorithms 49(1), 86–113 (2003). https://doi.org/10.1016/S0196-6774(03)00082-8

Hammer, P.L., Peled, U.N., Sun, X.: Difference graphs. Discrete Appl. Math. 28(1), 35–44 (1990). https://doi.org/10.1016/0166-218X(90)90092-Q

Harary, F., Peled, U.: Hamiltonian threshold graphs. Discrete Appl. Math. 16, 11–15 (1987). https://doi.org/10.1016/0166-218X(87)90050-3

Heggernes, P., Kratsch, D.: Linear-time certifying recognition algorithms and forbidden induced subgraphs. Nordic J. Comput. 14(1–2), 87–108 (2007)

Heggernes, P., Papadopoulos, C.: Single-edge monotonic sequences of graphs and linear-time algorithms for minimal completions and deletions. In: International Computing and Combinatorics Conference, pp. 406–416. Springer (2007). https://doi.org/10.1007/978-3-540-73545-8_40

Heggernes, P., Papadopoulos, C.: Single-edge monotonic sequences of graphs and linear-time algorithms for minimal completions and deletions. Theor. Comput. Sci. 410(1), 1–15 (2009). https://doi.org/10.1016/j.tcs.2008.07.020

Hell, P., Shamir, R., Sharan, R.: A fully dynamic algorithm for recognizing and representing proper interval graphs. SIAM J. Comput. 31(1), 289–305 (2002). https://doi.org/10.1137/S0097539700372216

Henderson, P.B., Zalcstein, Y.: A graph-theoretic characterization of the $$\text{ PV}_{\text{ chunk }}$$ class of synchronizing primitives. SIAM J. Comput. 6(1), 88–108 (1977). https://doi.org/10.1137/0206008

Henzinger, M.R.: Fully dynamic biconnectivity in graphs. Algorithmica 13(6), 503–538 (1995). https://doi.org/10.1007/BF01189067

Henzinger, M.R., Fredman, M.L.: Lower bounds for fully dynamic connectivity problems in graphs. Algorithmica 22(3), 351–362 (1998). https://doi.org/10.1007/PL00009228

Ibarra, L.: Fully dynamic algorithms for chordal graphs and split graphs. ACM Trans. Algorithms 4(4), 1–40 (2008). https://doi.org/10.1145/1383369.1383371

Klein, P.N., Subramanian, S.: A fully dynamic approximation scheme for shortest paths in planar graphs. Algorithmica 22(3), 235–249 (1998). https://doi.org/10.1007/PL00009223

Koop, G.J.: Cyclic scheduling of offweekends. Oper. Res. Lett. 4, 259–263 (1986). https://doi.org/10.1016/0167-6377(86)90026-X

Mahadev, N.V.R., Peled, U.N.: Threshold Graphs and Related Topics. Annals of Discrete Mathematics, vol. 56. North-Holland Publishing Co., Amsterdam (1995)

Ordman, E.T.: Threshold coverings and resource allocation. In: Proceedings of the 16th Southeastern Conference on Combinatorics, Graph Theory, and Computing, pp. 99–113. Utilitas Mathematica Pub., Winnipeg (1985)

Ordman, E.T.: Minimal threshold separators and memory requirements for synchronization. SIAM J. Comput. 18(1), 152–165 (1989). https://doi.org/10.1137/0218010

Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination on graphs. SIAM J. Comput. 5(2), 266–283 (1976). https://doi.org/10.1137/0205021

Shamir, R., Sharan, R.: A fully dynamic algorithm for modular decomposition and recognition of cographs. Discrete Appl. Math. 136(2–3), 329–340 (2004). https://doi.org/10.1016/S0166-218X(03)00448-7

Soulignac, F.J.: Fully dynamic recognition of proper circular-arc graphs. Algorithmica 71(4), 904–968 (2015). https://doi.org/10.1007/s00453-013-9835-7

Thorup, M.: Near-optimal fully-dynamic graph connectivity. In: Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, pp. 343–350 (2000). https://doi.org/10.1145/335305.335345

Yannakakis, M.: The complexity of the partial order dimension problem. SIAM J. Algebr. Discrete Methods 3(3), 351–358 (1982). https://doi.org/10.1137/0603036