Certain density theorems applied to the embeddability of iteration semigroups

Aequationes mathematicae - Tập 96 - Trang 71-84 - 2021
Hojjat Farzadfard1
1Department of Mathematics, Shiraz Branch, Islamic Azad University, Shiraz, Iran

Tóm tắt

Let A be an additive semigroup of real numbers the additive group generated by which is non-cyclic. Let $$I=(a,b)$$ be an open interval and $$\mathcal {A}=\left\{ f^\alpha :\alpha \in A\right\} $$ be an iteration semigroup of fixed point free increasing functions of I onto I such that $$\alpha <\beta $$ implies $$f^\alpha

Tài liệu tham khảo

Alsina, C., Sklar, A.: A characterization of continuous associative operations whose graphs are ruled surfaces. Aequ. Math. 33, 114–119 (1987) Blanton, G., Baker, A.: Iteration groups generated by \(C^n\) functions. Arch. Math. (Brno) 18, 121–127 (1982) Bourbaki, N.: Elements of Mathematics: General Topology-Part 2. Addison-Wesley (1966) Farzadfard, H., Khani Robati, B.: Simultaneous Abel equations. Aequ. Math. 83, 283–294 (2012) Farzadfard, H., Khani Robati, B.: The structure of disjoint groups of continuous functions. Abstr. Appl. Anal. Article ID 790758 (2012) Farzadfard, H.: Bi-iterative limits use to the theory of the Schröder equation. J. Math. Anal. Appl. 456, 608–615 (2017) Furstenberg, H.: Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation. Math. Syst. Theory 1, 1–49 (1967) Gonek, S.M., Montgomery, H.L.: Kronecker’s approximation theorem. Indag. Math. 27, 506–523 (2016) Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers. Oxford University Press, Oxford. Revised by D. R. Heath-Brown and J. H, Silverman (2008) Jarczyk, W.: Almost iterable functions. Aequ. Math. 42, 202–219 (1991) Krassowska, D., Zdun, M.C.: On the embeddability of commuting continuous injections in iteration semigroups. Publ. Math. Debrecen 75, 179–190 (2009) Krassowska, D., Zdun, M.C.: On one-parameter semigroups generated by commuting continuous injections. J. Math. Anal. Appl. 416, 862–880 (2014) Kuczma, M.: Functional Equations in a Single Variable, Monografie, Matematiczne, vol. 46. Polish Scientific Publishers, Warszawa (1968) Przebieracz, B.: Approximately iterable functions. In: Iteration Theory (ECIT ’06), Grazer Math. Ber. vol. 351, pp. 139–157. Karl-Franzes-Univ. Graz, Graz (2007) Przebieracz, B.: Weak almost iterability. Real Anal. Exchange 34(2), 359–375 (2009) Salzmann, H., Grundhöfer, T., Hähl, H., Löwen, R.: The Classical Fields. Structural Features of the Real and Rational Numbers. Cambridge University Press, Cambridge (2007) Sklar, A.: On certain dense sets of rationals, simultaneous Schröder and Böttcher equations, and characterizations of functions. Aequ. Math. 64, 232–247 (2002) Targonski, G.: Topics in Iteration Theory. Studia Math. Skript. Vanderhoeck and Ruprecht, Göttingen, Zurich (1981) Targonski, G.: Progress of iteration theory since 1981. Aequ. Math. 50, 50–72 (1995) Weitkämper, J.: Embeddings in iteration groups and semigroups with nontrivial units. Stochastica 7(3), 175–195 (1983) Zdun, M.C.: Continuous and differentiable iteration semigroups, [Prace Nauk. UNiw. Sla̧sk. Katowic. No. 308] Silesian Univ., Katowice (1979) Zdun, M.C.: On simultaneous Abel equations. Aequ. Math. 38, 163–177 (1989) Zdun, M.C., Solarz, P.: Recent results on iteration theory: iteration groups and semigroups in the real case. Aequ. Math. 87, 201–245 (2014) Zdun, M.C.: The embedding problem in iteration theory. Esiam Proc. Surv. 46, 86–97 (2014)