Pin Nhiên Liệu Gốm
Tóm tắt
Pin nhiên liệu gốm là một thiết bị chuyển đổi năng lượng hoàn toàn ở trạng thái rắn, sản xuất điện năng thông qua việc kết hợp điện hoá các khí nhiên liệu và khí oxy ở một oxit dẫn ion. Hiện tại, các pin nhiên liệu gốm sử dụng một vật dẫn ion oxy hoặc một vật dẫn proton làm chất điện phân và hoạt động ở nhiệt độ cao (>600°C). Các pin nhiên liệu gốm, thường được gọi là pin nhiên liệu oxit rắn (SOFC), hiện đang được phát triển cho nhiều ứng dụng phát điện khác nhau. Bài báo này xem xét khoa học và công nghệ của pin nhiên liệu gốm và thảo luận về các vấn đề quan trọng liên quan đến sự phát triển của loại pin nhiên liệu này. Sự nhấn mạnh được đặt vào việc thảo luận về các vật liệu thành phần (đặc biệt, chất điện phân ZrO2, điện cực anode nickel/ZrO2 cermet, điện cực cathode LaMnO3, và kết nối LaCrO3), các phản ứng khí tại các điện cực, thiết kế cụm pin và các kỹ thuật chế biến được sử dụng trong việc chế tạo các cấu trúc gốm cần thiết.
Từ khóa
Tài liệu tham khảo
Minh N. Q., 1991, High‐Temperature Fuel Cells. Part 2: The Solid Oxide Cell, CHEMTECH, 21, 120
Advances in Ceramics, 1981, Science and Technology of Zirconia
Advances in Ceramics, 1984, Science and Technology of Zirconia II
Advances in Ceramics, 1988, Science and Technology of Zirconia III
Stevens R., 1986, An Introduction to Zirconia
J. F.BaumardandP.Abelard “Defect Structure and Transport Properties of ZrO2‐Based Solid Electrolytes”; see Ref. 6 pp.555–71.
Badwal S. P. S., 1991, Proceedings of the Second International Symposium on Solid Oxide Fuel Cells, 445
M.Kleitz H.Bernard E.Fernandez andE.Schouler “Impedance Spectroscopy and Electrical Resistance Measurements on Stabilized Zirconia”; see Ref. 5 pp.310–36.
E. P.Butler R. K.Slotwinski N.Bonanos J.Drennan andB. C. H.Steele “Microstructural–Electrical Property Relationships in High‐Conductivity Zirconias”; see Ref. 6 pp.572–84.
Baukal W., 1972, From Electrocatalysis to Fuel Cells, 247
M.CiftciogluandM. J.Mayo “Processing of Nanocrystalline Ceramics”; presented at the Spring Meeting of the Materials Research Society San Francisco CA April 16–21 1990. Rept. No. DE90–015700 SAND‐90–1639C CONF‐900466–78 National Technical Information Service Alexandria VA 1990.
Scott C. E., 1978, Analysis of Cl‐ Ions Laundered from Submicron Zirconia Powders, Am. Ceram. Soc. Bull., 57, 741
Scott C. E., 1979, Effect of Laundering and Milling on the Sintering Behavior of Stabilized ZrO2 Powders, Am. Ceram. Soc. Bull., 58, 587
Singh J. P., 1988, 1988 Fuel Cell Seminar Abstracts, 145
Ishizaki F., 1989, Proceedings of the First International Symposium on Solid Oxide Fuel Cells, 3
M. T.Hernandez J. R.Jurado andP.Duran “Effect of Al2O3 Additions on the Electrical Properties of ZrO2–Y2O3and ZrO2–Y2O3–CeO2Electrolytes”; see Ref. 14 pp.421–28.
O.Yamamoto Y.Takeda N.Imanishi T.Kawahara G. Q.Shen M.Mori andT.Abe “Electrical and Mechanical Properties of Zirconia–Alumina Composite Electrolyte”; see Ref. 14 pp.437–44.
P.Duran J. R.Jurado C.Moure M. T.Hernandez andF.Capel “Improvement of the Mechanical Properties of Yttria‐Stabilized Zirconia Electrolyte”; see Ref. 14 pp.401–407.
Weppner W., 1990, Proceedings of the International Symposium on Solid Oxide Fuel Cells, 83
E. C.SubbaraoandH. S.Maiti “Oxygen Sensors and Pumps”; see Ref. 7 pp.731–47.
A. F.Sammells R. L.Cook andW. L.Worrell “Methane Conversion by Solid Electrolyte Membranes ” Rept. No. GR1‐90/0136 Gas Research Institute Chicago IL 1990.
S.Murakami Y.Miyake Y.Akiyama N.Ishida T.Saito andN.Furukawa “A Study on Composite Anode of Solid Oxide Fuel Cells”; see Ref. 31 pp.187–90.
Easler T., 1986, 1986 Fuel Cell Seminar Abstracts, 72
M.Suzuki H.Sasaki S.Otoshi andM.Ippommatsu “Development of Ru/ZrO2SOFC Anode”; see Ref. 14 pp.585–91.
Takahashi T., 1969, Proceedings of the Third International Symposium on Fuel Cells, 113
M.Mogensen “Properties of CeO2‐Based SOFC Anode Materials”; see Ref. 14 pp.577–84.
K. E. SwiderandW. L.Worrell “Synthesis and Characterization of Yuria. Stabilized Zirconia‐Titania Thin‐Film Electrodes”; see Ref. 14 pp.593–601.
S. S.LiouandW. L.Worrell “Mixed‐Conducting Oxide Electrodes for Solid Oxide Fuel Cells”; see Ref. 27 pp.81–89.
Sreedharan O. M., 1983, Standard Gibbs' Energy of Formation of LaMnO3 from EMF Measurements, High Temp. Sci., 16, 251
R.Ruka “Some Non‐Electrochemical Requirements for Air Electrode Materials of High‐Temperature Solid Electrolyte Fuel Cells”; pp.295–302inProceedings of the Conference on High‐Temperature Solid Oxide Electrolytes Vol. I—Anion Conductors (Brookhaven National Laboratory Upton NY Aug. 16–17 1983). Rept. No. BNL 51728‐Vol. I Brookhaven National Laboratory Upton NY 1983.
Fandel M., 1989, Properties of Ceramics, 2
Pavlov V. I., 1984, Influence of Impurity Centers on the Electrical Conductivity of Manganites with a Perovskite Structure, Inorg. Mater. (Engl. Transl.), 20, 752
Lyubkina I. Ya., 1986, Preparation and Electric Properties of LaMn1‐xNixO3 (O <0.7), Inorg. Mater. (Engl. Transl.), 22, 861
A.Mackor T. P. M.Koster J. G.Kraaijkamp J.Gerretsen andJ. P. G. M.vanEijk “Influence of La‐Substitution and ‐Substoichiometry on Conductivity Thermal Expansion and Chemical Stability of Ca or Sr‐Doped Lanthanum Manganites as SOFC Cathodes”; see Ref. 14 pp.463–71.
Katayama K., 1989, Sintering and Electrical Conductivity of La1‐xSrxMnO3, J. Ceram. Soc. Jpn. (Nippon Seramikkusu Kyokai Gakujutsu Ronbunsh), 97, 1324
L. G. J.deHaart R. A.Kuipers K. J.deVries andA. J.Burggraaf “Deposition and Electrical Properties of Thin Porous Ceramic Electrode Layers”; see Ref. 27 pp.197–203.
H.Lauret E.Caignol andA.Hammou “Electrical Properties of La1‐xSrxMnO3for x ≥ 0.5”; see Ref. 14 pp.479–86.
J. A. M.vanRoosmalen J. P. P.Huijsmans andE. H. P.Cordfunke “Sinter Behavior and Electrical Conductivity of (La Sr)MnO3as a Function of Sr Content”; see Ref. 14 pp.507–16.
S.Srilomsak D. P.Schilling andH. U.Anderson “Thermal Expansion Studies on Cathode and Interconnect Oxides”; see Ret. 27 pp.129–40.
Westinghouse Electric Corp. “High‐Temperature Solid Oxide Electrolyte Fuel Cell Power Generation System Quarterly Technical Progress Summary Report January 1 1984–March 31 1984 ” Rept. No. DOE/ET/17089–2217 U.S. Dept. of Energy Washington DC 1984.
Lau S. K., 1985, 1985 Fuel Cell Seminar Abstracts, 107
O.Yamamoto Y.Takeda R.Kanno andT.Kojima “Stability of Perovskite Oxide Electrode with Stabilized Zirconia”; see Ref. 27 pp.242–53.
Yokokawa H., 1990, Chemical Potential Diagrams for La‐M‐Zr‐O (M = V, Cr, Mn, Fe, Co, Ni) Systems: Reactivity of Perovskites with Zirconia as a Function of Oxygen Potential, Denki Kagaku, 58, 489, 10.5796/kogyobutsurikagaku.58.489
O.Yamamoto Y.Takeda andT.Kojima “Reactivity of Yttria‐Stabilized Zirconia with (La1‐xAx)1‐yMnO3+z(A = Ca Sr)”; see Ref. 31 pp.148–61.
H.Tagawa J.Mizusaki M.Katou K.Hirano A.Sawata andK.Tsuneyoshi “On the Solid State Reaction Between Stabilized Zirconia and Some Percvskite‐Type Oxides”; see Ref. 14 pp.681–88.
H.Yokokawa N.Sakai T.Kawada andM.Dokiya “Chemical Thermodynamic Compatibility of Solid Oxyide Fuel Cell Materials”; see Ref. 14 pp.663–70.
C.Milliken S.Elangovan andA.Khandkar “Interface Reactions and Sintering of Doped LaCrO3Materials”; see Ref. 31 pp.50–57.
R.Koc H. U.Anderson andS. A.Howard “Structural Sintering and Electrical Properties of the Perovskite‐Type (La Sr)(Cr Mn)O3”; see Ref. 27 pp.220–41.
Mori M., 1990, A New Cathode Material (La,Sr)1‐z(Mn1‐yCry)O3 (O ≤y≤ 0.2) for SOFC, Denki Kagaku, 58, 528, 10.5796/kogyobutsurikagaku.58.528
J.PalmaandC.Pascual “Perovskite‐Type (La Sr)(Mn Cr)O3Compounds as Candidates for SOFC Cathodes”; see Ref. 14 pp.537–44.
A.Iberl H.vonPhilipsborn M.Schießl E.Ivers‐Tiffée W.Wersing andG.Zorn “High‐Temperature X‐ray Diffraction Measurements of Phase Transitions and Thermal Expansion in (La Sr)(Mn Co)O3Cathode Materials”; see Ref. 14 pp.527–35.
A.Mackor C. I. M. A.Spee E. A.van derZouwen‐Assink J. L.Baptista andJ.Schoonman “Mixed Conductivity in Perovskite SOFC Materials La1‐xMxMn1‐yCoyO3(M = Ca or Sr)”; see Ref. 43 pp.251–55.
Mizusaki J., 1990, The La0.6Ca0.4MnO3‐YSZ Composite as an SOFC Air Electrode, Denki Kagaku, 58, 520, 10.5796/kogyobutsurikagaku.58.520
A.Tsunoda T.Yoshida andS.Sakurada “Effect of Pt Additions on the Resistance of La0.9Sr0.1MnO3Cathode”; see Ref. 27 pp.204–13.
Ohno Y., 1980, Research on Cathode Materials for High‐Temperature Solid Electrolyte Fuel Cells, Bull. Electrotech. Lab., 44, 40
Tagawa H., 1990, Sinterability and Electrical Conductivity of Variously Prepared Perovskite‐Type Oxide, La0.5Sr0.5CoO3, Denki Kagaku, 58, 512, 10.5796/kogyobutsurikagaku.58.512
Sorenson S. C., 1974, Properties of LaCoO3 as a Catalyst in Engine Exhaust Gases, Am. Ceram. Soc. Bull., 53, 446
H.Yokokawa N.Sakai T.Kawada andM.Dokiya “Stability and Reaction of Perovskite Materials in SOFCs”; see Ref. 31 pp.118–34.
E. F.Sverdrup C. J.Ward andA. D.Glasser “A Fuel Cell Power System for Central‐Station Power Generation Using Coal as a Fuel”; see Ref. 19 pp.255–77.
D. D.MarchantandJ. L.Bates “Preparation and Properties of Electrically Conducting Ceramics Based on Indium Oxide‐Rare‐Earth Oxides‐Hafnium Oxide”; see Ref. 75 pp.259–67.
J. L.BatesandC. W.Griffin “Oxide Electrodes for Solid Oxide Fuel Cells”; see Ref. 55 pp.48–51.
J. L.Bates W. J.Weber andC. W.Griffin “Solid Oxide Fuel Cell Electrodes Based on In2O3‐PrO1.83‐ZrO2”; see Ref. 27 pp.141–56.
M. M.Nasrallah H. U.Anderson andJ. W.Stevenson “Defect Chemistry and Properties of Y1‐xCaxMnO3”; see Ref. 14 pp.545–52.
Ruiz J. S., 1967, Sur les Propriétés Semi‐Conductrices du Chromite de Lanthane, C. R. Acad. Sci., Paris, 264, 1271
Traverse J. P., 1973, Étude Radiocristallographique à Haute Température du Chromite de Lanthane, C. R. Acad. Sci., Paris, 276, 1167
Anthony A. M., 1967, Proceedings of the Third International Symposium on High‐Temperature Technology, 215
Berjoan R., 1973, Science of Ceramics, 343
Berjoan R., 1976, Contribution a l' Étude des Réactions de l'Oxygëne avec les Mélanges d'Oxyde de Lanthane et d'Oxyde de Chrome III ou de Chromite de Lanthane, Rev. Int. Hautes Temp. Refract., 13, 119
Berjoan R., 1980, Oxygen Reactivity of La2O3‐Cr2O3‐CaO MHD‐Related Materials, High Temp. Sci., 13, 173
Tolochko S. P., 1987, Structure and Properties of Solid Solutions LaCo1‐x Cr1‐x O3, Inorg. Mater. (Engl. Transl.), 23, 743
Tolochko S. P., 1987, Phase Transitions in Solid Solutions Based on Lanthanum Chromite, Inorg. Mater. (Engl. Transl.), 23, 1342
Zhuk P. P., 1988, Properties of Iron‐Doped Lanthanum Chromite, Inorg. Mater., (Engl. Transl.), 24, 88
Meadowcroft D. B., 1969, Some Properties of Strontium‐Doped Lanthanum Chromite, Br. J. Appl. Phys., 2, 1225
Westinghouse Electric Corp. “Interconnection Materials Development for Solid Oxide Fuel Cells ” Rept. No. DOE/MC/21184–1985 U.S. Dept. of Energy Washington DC 1985.
V. H.Schmidt “Electrical Properties of Lanthanum Chromite Based Ceramics in Hydrogen and Oxidizing Atmospheres at High Temperatures ” Rept. No. DOE/ET/15415–1 U.S. Dept. of Energy Washington DC 1981.
D. W.DeesandF. C.Mrazek “Characterization of Monolithic Fuel Cell Components”; see Ref. 55 pp.56–59.
N. Q.Minh C. R.Horne F. S.Liu D. M.Moffatt P. R.Staszak T. L.Stillwagon andJ. J.VanAckeren “Fabrication and Characterization of Monolithic Solid Oxide Fuel Cells”; see Ref. 43 pp.256–61.
Flandermeyer B. F., 1985, High‐Temperature Stability of Magnesium‐Doped Lanthanum Chromite, High Temp. Sci., 20, 259
H. U.Anderson J. H.Kuo andD. M.Sparlin “Review of Defect Chemistry of LaMnO3and LaCrO3”; see Ref. 27 pp.111–28.
I.YasudaandT.Hikita “Electrical Conductivity and Oxygen Chemical Diffusion Coefficient of Calcium‐Doped Lanthanum Chromites”; see Ref. 14 pp.645–52.
F. J.BrodmannandP. E. D.Morgan “Advances in Lanthanum Chromite MHD Electrode Development”; pp.135–41in Conference on High‐Temperature Sciences Related to Open‐Cycle Coal‐Fired MHD Systems (Argonne National Laboratory Argonne IL April 4–6 1977). Rept. No. ANL‐77–21 Argonne National Laboratory Argonne IL 1977.
Meadowcroft D. B., 1979, Oxidation and Vaporization Processes in Lanthanum Chromite, Am. Ceram. Soc. Bull., 58, 610
L. A.Chick J. L.Bates L. R.Pederson andH. E.Kissinger “Synthesis of Air‐Sinterable Lanthanum Chromite Powders”; see Ref. 27 pp.170–87.
Anderson H. U., 1990, Ceramic Powder Science III, 749
M. Dokiya. N. Sakai T.Kawada H.Yokokawa T.Iwata andM.Mori “Overview of Planar SOFC Development at NCLI”: see Ref. 27. pp.325–36.
J. L.Bates “SOFC Materials Development: Chromite Interconnect”; pp.159–70inProceedings of the Second Annual Fuel Cells Contractors Review Meeting. Edited byW. J.Huber. Rept. No. DOE/METC‐90/6112 U.S. Dept. of Energy Washington DC 1990.
L. A.Chick J. L.Bates andG. D.Maupin “Air‐Sintering Mechanisms of Chromites”; see Ref. 14 pp.621–28.
N.Sakai T.Kawada H.Yokokawa andM.Dokiya “Low‐Temperature Sintering Characteristies of Calcium‐Doped Lanthanum Chromites”; see Ref. 14 pp.629–36.
Anderson H. U., 1978, Proceedings of the Workshop on High‐Temperature Solid Oxide Fuel Cells, 41
R.KocandH. U.Anderson “Low‐Temperature Sintering of LaCrO3‐Based Ceramics”: see Ref. 175 pp.749–55.
M. M.Nasrallah J. D.Carter H. U.Anderson andR.Koc “Low‐Temperature Air‐Sinterable LaCrO3and YCrO3”; see Ref. 14. pp.637–44.
N. Q.Minh “Monolithic Solid Oxide Fuel Cell Materials”. see Ref. 178. pp.186–90.
N. Q.Minh T. R.Armstrong J. R.Esopa J. V.Guiheen C. R.Horne F. S.Liu T. L.Stillwagon andJ. J.VanAckeren “Fabrication Methodologies for Monolithic Solid Oxide Fuel Cells”: see Ref. 14 pp.93–98.
B. K.Flandermeyer J. T.Dusek P. E.Blackburn D. W.Dees C. C.McPheeters andR. B.Poeppel “Interconnection Development for Monolithie Solid Oxide Fuel Cells”: see Ref. 55 pp.68–71.
B. K.Flandermeyer R. B.Poeppel J. T.Dusek andH. U.Anderson “Sintering Aid for Lanthanum Chromite Retractories.” U. S. Pat. No. 4749632 June 7.1988.
C.MillikenandA.Khandkar “Fabrication of Integral Flow‐Field Interconnect for Planar SOFC Stacks”: see Ref. 27 pp.361–76.
M. A.JanneyandH. D.Kimrey “Microwave Sintering of Fuel Cell Materials”; presented at Conference on Fossil Energy Materials. May 15–17. 1990. Rept. No. DE90–011643 CONF‐900546–5. National Technical Information Service Alexandria VA.1990.
Negas T., 1980, Proceedings of the Fourth International Meeting on Modern Ceramics Technologies, 993
Weber W. J., 1986, Defect Properties and Processing of High‐Technology Nonmeiallic Materials, 235
P. G.Russell H. S.Isaacs A. C. C.Tseung andS.Srinivasan “Studies of Glass Composites and Doped Rutile as Interconnection Materials”; see Ref. 181 pp.96–102.
W.Wersing E.Ivers‐Tiffée M.Schieβl andH.Greiner “New Planar Solid Oxide Fuel Cell with Metallic Bipolar Plate”; see Ref. 31 pp.33–42.
Tenmei H., 1990, Preparation of Metal Interconnector Coated with LaCrO3 by Vacuum Evaporation, Denki Kagaku, 58, 1072
K.Eguchi T.Setoguchi M.Sawano S.Tamura andH.Arai “A Study on Anode and Interconnector Materials for Solid Oxide Fuel Cells”: see Ref. 14 pp.603–10.
D. M.MasonandC. J.Wen “Electrocatalysis of Coal Gas Compounds on Solid Oxide Electrolytes”; see Ref. 181 pp.160–68.
B. C.NguyenandD. M.Mason “Mechanisms of Catalytic Oxidation of Hydrocarbons in a Solid Electro yte Fuel Cell”; see Ref. 181. pp.331–47.
Weissbart J., 1963, Fuel Cells, 37
Dees D. W., 1989, Proceedings of the Symposium on Fuel Cells, 130
Chebotin V. N., 1971, Polarization of a Hydrogen Electrode on a Solid Oxide Electrolyte, Sov. Electrochem., 7, 55
J.Guindet C.Roux andAHammou “Hydrogen Oxidation at the Nickel/Zirconia Electrode”; see Ref. 14 pp.553–59.
P. H.Middleton M. E.Seiersten andB. C. H.Steele “Morphology and Electrochemistry of Porous Nickel/Zirconia Cermets”; see Ref. 27 pp.90–98.
M. E.SeierstenandP. H.Middleton “Redox Behavior of Plasma Sprayed Nickel Anodes”: see Ref. 14 pp.569–76.
Glumov M. V., 1968, Polarization of a Nickel Anode in a Solid 0.9ZrO2–0.1 Y2O3 Electrolyte, Sov. Electrochem., 4, 1114
Glumov M. V., 1970, Oxidation of a Nickel Electrode in Contact with a Solid Oxide Electrolyte During Anodic Polarization, Sov. Electrochem, 6, 386
Archer D. H., 1965, Hydrocarbon Fuel Cell Technology, 51
Zahradnik R. L., 1969, Troisiémes Journées Internationales d'Étude des Piles á Combustible, 125
Karpachev S. V., 1970, Polarization for Reduction of Carbon Dioxide at a Platinum Electrode in a Solid Electrolyte, Sov. Electrochem., 6, 564
Cheboshin V. N., 1971, Polarization of a Carbon Monoxide Electrode on a Solid Oxide Electrolyte, Sov. Electrochem., 7, 179
D. W.Dees U.Balachandran S. E.Dorris J. J.Heiberger C. C.McPheeters andJ. J.Picciolo “Interfacial Effects in Monolithic Solid Oxide Fuel Cells”; see Ref. 27 pp.317–21.
S.Murakami Y.Akiyama N.Ishida T.Yasuo T.Saito andN.Furukawa “Development of a Solid Oxide Fuel Cell with Composite Anodes” see Ref. 14 pp.561–68.
G.Maggio I.Ielo V.Antonucci andN.Giordano “Morphological Optimization of a SOFC Anode Based on Theoretical Considerations: A Preliminary Approach”; see Ref. 14 pp.611–20.
S. C.Singhal R. J.Ruka J. E.Bauerle andC. J.Spengler “Anode Development for Solid Oxide Fuel Cells ” Rept. No. DOE/MC/22046–2371. U.S. Dept. of Energy Washington DC 1986.
L. A.ShocklingandJ. M.Makiel “Natural‐Gas‐Fueled 3‐kWe SOFC Generator Test Results”; see Ref. 43 pp.224–29.
A. L.Lee “Internal Reforming Development for Solid Oxide Fuel Cells ” Rept. No. DOE/MC/22045–2364 U.S. Dept. of Energy Washington DC 1987.
P.Singh J.Ruka andR. A.George “Electrochemical Generator Apparatus Containing Modified Fuel Electrodes for Use with Hydrocarbon Fuels ” U.S. Pat. No. 4894297 Jan. 16 1990.
Mogensen M., 1990, 1990 Fuel Cell Seminar Abstracts, 195
Pizzini S., 1973, Fast Ion Transport in Solids, Solid‐State Batteries, and Devices, 461
Raleigh D. O., 1973, Electroanalytical Chemistry, 87
Gür T. M., 1979, Fast Ion Transport in Solids, 113
Schouler E., 1973, Applications Selon Bauerle du Tracé des Diagrammes d'Admittance Complexe en Électrochimie des Solides. I. Étude de Quelques Réactions d'Electrode sur (ZrO2)0–90(Y2O3)0–09, J. Chim. Phys. Phys.–Chim. Biol., 70, 923, 10.1051/jcp/1973700923
M.Kleitz P.Fabry andE.Schouler “Electrode Polarization and Electronic Conductivity Determination in Solid Electrolytes”; see Ref. 237 pp.439–51.
Kenjo T., 1990, Influence of Electrolytes and Some Oxide Additives on High‐Temperature Platinum Cathodes, Denki Kagaku, 58, 533, 10.5796/kogyobutsurikagaku.58.533
R. J.BrookandT. L.Markin “Electrodes for Solid Electrolyte Systems”; see Ref. 237 pp.533–41.
Glumov M. V., 1984, The Polarization of Porous Platinum Electrodes in a Solid‐Electrolyte Cell in Oxygen Atmospheres, Sov. Electrochem., 22, 207
Gruzdev A. I., 1990, Electrode Kinetics in Systems Consisting of Thin‐Film Metal Electrodes and Stabilized Zirconium Dioxide, Sov. Electrochem., 26, 530
Filayev A. T., 1967, Electrochemistry of Molten and Solid Electrolytes, 161
G. P.WirtzandH. S.Isaacs “Defect Electrochemistry of Oxide Electrodes”; see Ref. 75 pp.303–22.
K.Eguchi T.Inoue M.Ueda J.Kamimae andH.Arai “The Activation and Transfer of Oxygen at Electrolyte/Cathode Interface for SOFCs”; see Ref. 14 pp.697–704.
A.Hammouche E.Siebert M.Kleitz andA.Hammou “Oxygen Reduction at the La1‐xSrxMnO3/Zircoria Electrode”; see Ref. 27 pp.265–76.
T.Jacobsen H.Zachau‐Christiansen K.West andS.Skaarup “Linear Sweep Voltammetry on La0.85Sr0.15MnO3”; see Ref. 14 pp.795–802.
J.Mizusaki H.Tagawa K.Tsuneyoshi andA.Sawata “Reaction Kinetics and Microstructure of La0.6Ca0.4MnO3/YSZ Air Electrode”; see Ref. 27 pp.254–64.
O.Yamamoto Y.Takeda R.Kanno andM.Noda “Cathodic Polarization Phenomena of Oxide Electrodes with Stabilized ZrO2Electrolyte”; see Ref. 7 pp.829–35.
M.Aizawa H.Nishiyama A.Ueno C.Kobayashi S.Suzuki K.Fguchi andH.Arai “Study on Air Electrode Made of La‐Based Materials”; see Ref. 14 pp.803–11.
A. O.Isenberg “Cell Performance and Life Characteristics of Solid Oxide Electrolyte Fuel Cells”; see Ref. 75 pp.5–15.
Westinghouse Electric Corp. “Solid Oxide Fuel Cell Power Generation System The Status of the Cell Technology—A Topical Report ” Rept. No. DOE/ET/17089–15 U.S. Dept. of Energy Washington DC 1984.
S. C.Singhal “Solid Oxide Fuel Cell Development at Westinghouse”; see Ref. 14 pp.25–33.
W. J.Dollard “The Westinghouse Solid Oxide Fuel Cell Program—A 1989 Progress Report”; see Ref. 31 pp.1–11.
D. C.Fee S. A.Zwick andJ. P.Ackerman “Solid Oxide Fuel Cell Performance”; see Ref. 75 pp.29–38.
R. J.Bratton P.Reichner andL. W.Montgomery “Fuel Cell Production Process Control and Qualification of Finished Cells”; see Ref. 55 pp.80–83.
G. E.Zymboly P.Reichner andJ. M.Makiel “Cell Fabrication Design and Operation of a Solid Oxide Fuel Cell Generator”; see Ref. 95 pp.95–101.
B. R.Rossing “Microstructure–Property Relationships for Porous CaO‐Stabilized ZrO2Support Tubes”; see Ref. 75 pp.45–55.
Westinghouse Electric Corp. “High‐Temperature Solid Oxide Electrolyte Fuel Cell Power Generation System Quarterly Technical Report April–June 1984 ” Rept. No. DOE/ET/17089–2218 U. S. Dept. of Energy Washington DC 1984.
Isenberg A. O., 1977, Proceedings of the Symposium on Electrode Materials and Processes for Energy Conversion and Storage, 572
R.Draper “Progress in Solid Oxide Fuel Cell Technology Utilizing Multi‐Stage Vacuum Pumping Systems in Electrochemical Vapor Deposition Process ”Ind. Heat. [Dec.]44–46(1991).
U. B.PalandS. C.Singhal “Electrochemical Vapor Deposition of Yttria‐Stabilized Zirconia Films”; see Ref. 27 pp.41–56.
N. J.KiwietandJ.Schoonman “Electrochemical Vapor Deposition: Theory and Experiment”; see Ref. 43 pp.240–45.
J. P.Dekker N. J.Kiwiet andJ.Schoonman “Electrochemical Vapor Deposition of SOFC Components”; see Ref. 27 pp.57–66.
Y. S.Lin L. G. J.deHaart K. J.deVries andA. J.Burggraaf “Thin Electrolyte Layers for SOFC via Modification of Ceramic Membranes by CVD and EVD”; see Ref. 27 pp.67–70.
1988, Abar Ipsen Makes Reactors for Fuel Cell Fabrication, Ceram. Ind., 130, 13
Isenberg A. O., 1982, 1982 Fuel Cell Seminar Abstracts, 154
Isenberg A. O., 1983, 1983 Fuel Cell Seminar Abstracts, 78
N. J.Maskalick “Design and Performance of Tubular Solid Oxide Fuel Cells”; see Ref. 27 pp.279–87.
Westinghouse Electric Corp. “High‐Temperature Solid Oxide Electrolyte Fuel Cell Power Generation System Quarterly Technical Progress Report April–June 1983 ” Rept. No. DOE/ET/17089–12 U.S. Dept. of Energy Washington DC 1985.
Westinghouse Electric Corp. “High‐Temperature Solid Oxide Electrolyte Fuel Cell Power Generation System Quarterly Summary Report July–September 1983 ” Rept. No. DOE/ET/17089–1972 U.S. Dept. of Energy Washington DC 1985.
A. O.Isenberg “Performance and Life Test of a Solid Oxide Fuel Cell Stack”; see Ref. 95 pp.102–106.
P.ReichnerandJ. M.Makiel “Development Status of Multi‐Cell Solid Oxide Fuel Cell Generators”; see Ref. 55 pp.32–35.
S. E.Veyo “SOFC Field Experiments a Learning Experience”; see Ref. 26 pp.13–17.
E. R.Ray “High‐Temperature Solid Oxide Electrolyte Fuel Cell Power Generation System”; see Ref. 178 pp.123–26.
W. G.Parker “Westinghouse Solid Oxide Fuel Cell Program—A 1990 Status Report”; see Ref. 43 pp.213–17.
L. A.ShocklingandP.Reichner “Development of a Commercially Practical Natural Gas Fueled SOFC Generator”; see Ref. 212 pp.106–17.
A. O.Isenberg “Thin‐Film High‐Temperature Solid Electrolyte Fuel Cells”; see Ref. 299 pp.682–91.
Ohno Y., 1980, Proceedings of the 15th Intersociety Energy Conversion Engineering Conference, 881
Sato H., 1981, High‐Temperature Solid Electrolyte Fuel Cell, Energy Dev. Jpn., 4, 111
Nagata S., 1984, Proceedings of the 19th Intersociety Energy Conversion Engineering Conference, 827
D. H.Archer R. L.Zahradnik E. F.Sverdrup W. A.English L.Elikan andJ. J.Alles “Solid Electrolyte Batteries”; pp.36–40in Proceedings of the 18th Annual Power Sources Conference (Fort Monmouth NJ May 19–21 1964). PSC Publications Committee Red Bank NJ 1964.
Archer D. H., 1964, Coal‐Burning Fuel Cell Systems, Chem. Eng. Prog., 60, 64
Bohme H. J., 1970, ENERGY 70, 5–59
F. J.Rohr “High‐Temperature Solid Oxide Fuel Cells: Present State and Problems of Development”; see Ref. 181 pp.122–38.
W.Dönitz E.Erdle W.Schafer R.Schamm andR.Spah “Status of SOFC Development at Dornier”; see Ref. 14 pp.75–84.
F.Umemura H.Ota K.Amano S.Kaneko T.Gengo S.Uchida N.Murakami andA.Notoni “Development of Solid Oxide Fuel Cell”; see Ref. 31 pp.25–32.
K.Tsukamoto F.Uchiyama Y.Kaga Y. Ohno. T. Yanagisawa. Y. Takahagi. M. J.Lain T.Nakajima andA.Monma “A New Ceramic Coating Technique for the SOFC Using the ETL Laser Spraying process”; presented at the 7th International Conference on Solid State Ionics Hakone Japan. Nov. 5–11 1989. The Solid State Ionics Society of Japan 1989.
Ohno Y., 1987, Proceedings of International Institute for the Science of Sintering Symposium, 1179
Kaga Y., 1989, A Study on the Gas Permeation Performance of Solid Oxide Fuel Cell Components, Trans. Inst. Electr. Eng. Jpn., 109, 145
Y.Ohno Y.Kaga A.Monma K.Tsukamoto F.Uchiyama andT.Okuo “Evaluation of Gas Permeabilities of Solid Oxide Fuel Cell Components”; see Ref. 14 pp.455–62.
S.Nagata Y.Kasuga K.Hayashi Y.Kaga Y.Ohno andR.Fukuda “Development of Solid Oxide Fuel Cell”; see Ref. 26 pp.74–77.
S.Kaneko T.Gengo S.Uchida andY.Yamauchi “Research and Development of Solid Oxide Fuel Cells”; see Ref. 14 pp.35–42.
F.Umemura H.Ohta K.Amano T.Saishoji S.Kaneko N.Murakami T.Gengo andS.Uchida “Research and Development of SOFC”; see Ref. 236 pp.127–30.
J. P.AckermanandJ. E.Young “Solid Oxide Fuel Cell Having Monolithic Core ” U.S. Pat. No. 4476 198 Oct. 9 1984.
R. B.PoeppelandJ. T.Dusek “Solid Oxide Fuel Cell Having Monolithic Cross Flow Core and Manifolding ” U.S. Pat. No. 4476 196 Oct. 9 1984.
Minh N. Q., 1989, Monolithic Solid Oxide Fuel Cells, J. Inst. Elctr. Eng. Jpn., 109, 826
S.Majumdar “Stress and Fracture Behavior of Monolithic Fuel Cell Tapes”; see Ref. 55 pp.60–63.
C. C.McPheetersandT. D.Claar “Tape‐Casting High‐Density Electrolyte for Solid Oxide Fuel Cells”; see Ref. 55 pp.64–67.
N.Minh F.Liu P.Staszak T.Stillwagon andJ.VanAckeren “Monolithic Solid Oxide Fuel Cell Fabrication Development”; see Ref. 26 pp.105–108.
U.Balachandran S. E.Dorris J. J.Picciolo R. B.Poeppel C. C.McPheeters andN. Q.Minh “Material and Fabrication Challenges in the Development of Monolithic Solid Oxide Fuel Cells”; see Ref. 232 pp.1541–45.
C. C.McPheeters D. W.Dees S. E.Dorris andJ. J.Picciolo “Argonne Monolithic Solid Oxide Fuel Cell Fabrication”; see Ref. 26 pp.29–32.
N. Q.Minh C. R.Horne F.Liu P. R.Staszak T. L.Stillwagon andJ. J.VanAckeren “Forming and Processing of Monolithic Solid Oxide Fuel Cells”; see Ref. 27 pp.307–16.
Fee D. C., 1986, Proceedings of the 21st Intersociety Energy Conversion Engineering Conference, 1634
Fee D. C., 1987, Proceedings of the 22nd Intersociety Energy Conversion Engineering Conference, 803
Minh N. Q., 1990, Structural Ceramics, 213
N. Q.Minh T. R.Armstrong J. V.Guiheen C. R.Horne F. S.Liu D. M.Moffatt T. L.Stillwagon andJ. J.VanAckeren “Monolithic Solid Oxide Fuel Cell Technological Status”; see Ref. 236 pp.524–26.
D. C.Fee P. E.Blackburn D. E.Busch T. D. Claar. D. W.Dees J.Dusek T. E.Easier W. A.Ellingson B. K.Flandermeyer R. J.Fousek.J. J.Heiberger T. E.Kraft S.Majumdar C. C.McPheeters R. C.Mrazek J. J.Picciolo R. B.Poeppel andS. A.Zwick “Monolithic Fuel Cell Development”; see Ref. 55 pp.40–43.
McPheeters C. C., 1988, Proceedings of the 23rd Intersociety Energy Conversion Engeneering Conference, 279
Fee D. C., 1987, Space Nuclear Power Systems 1986, 209
R. C.Ruhl “Solid Electrolyte Fuel Cell and Assembly ” U.S. Pat. No. 4770 955 Sept. 13 1988.
J. E.Herceg “Integral Manifolding Structure for Fuel Cell Core Having Parallel Gas Flow ” U.S. Pat. No. 4476 197 Oct. 9 1984.
M. S.Hsu “Compact Light‐Weight Solid‐Oxide Electrochemical Converter ” U.S. Pat. No. 4629 537 Dec. 16 1986.
M. S.Hsu “Efficiency Doubling Using Solid Oxide Fuel Cell/Steam Power Plant Integration”; see Ref. 31 pp.76–82.
M. S.Hsu “Zirconia Fuel‐Cell Power System”; see Ref. 95 pp.115–18.
H.Takagi S.Kobayashi A.Shiratori K.Nishida andY.Sakabe “Fabrication and Performance of Monolithic Solid Oxide Fuel Cell”; see Ref. 14 pp.99–103.
Ceramatec Inc. “Development of Planar Geometry Solid Oxide Fuel Cell Technology Phase I Final Report July 1986‐July 1987 ” Rept. No. GRI‐87/0297 Gas Research Institute Chicago IL 1987.
Khandkar A., 1990, Development of Planar SOFC Technology: Progress and Problems, Denki Kagaku, 58, 551, 10.5796/kogyobutsurikagaku.58.551
Ceramatec Inc. “Development of Planar Geometry Solid Oxide Fuel Cell Technology Phase II Annual Report October 1987‐October 1988 ” Rept. No. GRI‐89/0161 Gas Research Institute Chicago IL 1989.
J. P. P.Huijsmans E. J.Siewers F. H.VanHeuveln andJ. P.deJong “Fabrication of Planar SOFC Components at ECN”; see Ref. 14 pp.113–18.
T.Hoshina T.Yoshida andS.Sukurada “Tonen Test of Planar SOFC”; see Ref. 236 pp.25–28.
S.Murakami Y.Akiyama N.Ishida T.Yasuo T.Saito andN.Furukawa “Development of a Planar Solid Oxide Fuel Cell”; see Ref. 14 pp.59–65.
H.Michibata H.Tenmei T.Namikawa andY.Yamazaki “Preparation of LaMnO3Thin Film Electrode for Solid Oxide Fuel Cells by Vacuum Evaporation”; see Ref. 27 pp.188–96.
M.Dokiya N.Sakai T.Kawada H.Yokokawa T.Iwata andM.Mori “Fabrication of a Planar Solid Oxide Fuel Cell”; see Ref. 232 pp.1547–51.
M.Dokiya N.Sakai T.Kawada H.Yokokawa andI.Anzai “Wet Process for Planar SOFC”; see Ref. 14 pp.127–34.
P. A.Lessing L. W.Tai andK. A.Klemm “Fabrication Technologies for a Planar Solid Oxide Fuel Cell”; see Ref. 27 pp.337–60.
Y.Akiyama N.Ishida S.Murakami andT.Saito “Solid Oxide Electrolyte Fuel Cell ” U.S. Pat. No. 4997 726 Mar. 5 1991.
T.Yoshida T.Shima F.Ishizaki H.Iwasaki I.Mukaizawa Y.Someya S.Sakurada andO.Yamamoto “Solid Electrolyte Type Fuel Cells ” U.S. Pat. No. 4 950 562 Aug. 21 1990.
J.Jung Th.Martens H.Runge andM.Turwitt “Fabrication Results and Operating Experience with a Planar SOFC Design”; see Ref. 14 pp.144–51.
V. E. J.vanDieten P. H. M.Walterbos andJ.Schoonman “Advanced Deposition Techniques for Solid Oxide Fuel Cell Components”; see Ref. 14 pp.183–91.
Michibata H., 1989, Preparation of LaCoO3 Thin‐Film Electrode by Vacuum Evaporation for Solid Oxide Fuel Cells, Denki Kagaku, 57, 255, 10.5796/kogyobutsurikagaku.57.255
Y.Yamazaki T.Namikawa andH.Michibata “Preparation of Ultra‐Thin Solid Oxide Fuel Cells Using Nickel Foil Substrates”; see Ref. 14 pp.175–81.
Nakagawa N., 1989, Preparation of Thin‐Film Zirconia Electrolyte Fuel Cell by RF Sputtering, Denki Kagaku, 57, 215
N.Nakagawa C.Kuroda andM.Ishida “A Thin‐Film YSZ Fuel Cell Set on a Porous Alumina Substrate by RF Sputtering Technique”; see Ref. 31 pp.58–66.
Uyama H., 1990, Formation of Yttria‐Stabilized Zirconia Film by Plasma MOCVD, Denki Kagaku, 58, 564, 10.5796/kogyobutsurikagaku.58.564
K. J.deVries R. A.Kuipers andL. G. J.deHaart “Planar Solid Oxide Fuel Cells Based on Thin YSZ Electrolyte Layers”; see Ref. 14 pp.135–43.
H.Nakagawa S.Kosuge H.Tsuneizumi E.Matsuda H.Mihara andY.Sato “Characteristics of Electrolyte Processed by CO2Laser Evaporation Techniques”; see Ref. 27 pp.71–78.
S.Fukami M.Kitoh A.Bunya H. Saitoh. T. Itoh. Y. Kaga. Y.Ohno K.Eguchi andH.Arai “Preparation of Electrolyte Film by Plasma Spraying”; see Ref. 14 pp.205–14.
D.Stover R.Hecker H.Jansen andW.Mallener “Shaping of SOFC Components by Use of Plasma Spraying”; see Ref. 14. pp.215–20.
K.Okiai S. Yoshida. I.Kaji M.Hasegawa H.Yamanouchi andM.Nagata “Application of Plasma Spray Process for Porous Electrodes”; see Ret. 31 pp.191–96.
H.Hamatani T.Okada andT.Yoshida “Development of Consistent Fabrication Process for SOFC by Hybrid Plasma Spraying”; see Ref. 31 pp.197–202.
Z.Ogumi Y.Tsuji Y.Uchimoto andZ.Takehara “Plasma Electrolytic Deposition for the Preparation of Thin Stabilized Zirconia Films”; see Ref. 31. pp.203–206.
Z.Ogumi Y.Tsuji Y.Uchimoto andZ.Takehara “Preparation of Thin Yttria‐Stabilized Zirconia Films by Vapor‐Phase Electrolytic Deposition and its Application to SOFC”; see Ref. 14 pp.201–204.
S.SakuradaandT.Yoshida “Results of Solid Oxide Fuel Cell at Tonen”; see Ref. 14 pp.45–54.
S.Elangovan C.Milliken M.Timper andA.Khandkar “Commercializing Planar SOFC Technology: Phase II–Status and Overview”; presented at an EPRI/GRI Fuel Cell Workshop on Fuel Cell Technology Research & Development (San Francisco CA April 29–30 1992). Electric Power Research Institute Palo Alto CA 1992.
H.Shundo H.Shimizu N.Kusunose T.Iwata S.MaruyamaandK.Koseki “Substrate‐Type Planar SOFC Technology”; see Ref. 14 pp.119–26.
T.Inoue H.Yoshida Y.Esaki H.Miyamoto M.Ishibashi H.Haneda andK.Takenobu “Development of MOLB‐Type Solid Oxide Fuel Cell”; see Ref. 236 pp.520–23.
Iwahara H., 1989, High-Temperature C1-Gas Fuel Cells Using Proton-Conducting Solid Electrolytes, 19, 448