Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Protein trung tâm I (CENPI) là một gen ứng cử cho hội chứng thận nhiễm mỡ nhạy cảm với steroid liên quan đến nhiễm sắc thể X
Tóm tắt
Những cá nhân có protein niệu đi kèm với hạ albumin huyết, phù nề và tăng lipid máu được coi là mắc hội chứng thận nhiễm mỡ (NS). NS là bệnh thận phổ biến nhất gặp ở nhóm tuổi nhi. NS thường được phân loại thành hội chứng thận nhiễm mỡ kháng steroid (SRNS) và hội chứng thận nhiễm mỡ nhạy cảm với steroid (SSNS). Hơn 58 gen đã được xác định là nguyên nhân đơn gen của SRNS; tuy nhiên, cấu trúc di truyền của SSNS ở trẻ em vẫn chưa được hiểu rõ. Trong nghiên cứu này, chúng tôi đã thực hiện giải trình tự 66 gen ứng cử về NS, tiếp theo là định gen SNP toàn bộ bộ gen và giải trình tự toàn bộ exome ở các gia đình SSNS với nhiều cá nhân bị ảnh hưởng. Giải trình tự các gen ứng cử về NS không phát hiện biến thể gây bệnh nào ở các gen đã biết. Lập bản đồ đồng hợp tử dựa trên mô hình lặn tự nhiễm thất bại trong việc phát hiện bất kỳ vùng mất dị hợp tử chung nào trong bộ gen. Phân tích dữ liệu exome không thiên lệch và không dự đoán đã xác định được một biến thể sai mã (c.383G>A; p.Arg128Gln) trong gen CENPI. Giải trình tự Sanger của cả hai bậc phụ huynh, cá nhân không bị ảnh hưởng và cá nhân bị ảnh hưởng đã xác nhận một mẫu di truyền liên kết với nhiễm sắc thể X của biến thể (c.383G>A) với kiểu hình SSNS. Biến thể (c.383G>A) rất hiếm và có khả năng gây hại. Tập hợp lại, những quan sát này gợi ý rằng có một liên kết gây bệnh đặc biệt giữa sự phát triển của SSNS và sự thay đổi trong CENPI. Tuy nhiên, các đột biến ở người trong CENPI gây ra SSNS chưa được báo cáo cho đến nay. Việc xác định các khiếm khuyết di truyền gây ra SSNS sẽ giúp hiểu rõ hơn về nguyên nhân chính xác của SSNS và cải thiện quản lý trẻ em mắc NS.
Từ khóa
#hội chứng thận nhiễm mỡ #gen CENPI #di truyền học #bệnh thận #trẻ em #không nhạy cảm với steroid #di truyền liên kết với nhiễm sắc thể XTài liệu tham khảo
Eddy AA, Symons JM (2003) Nephrotic syndrome in childhood. Lancet 362(9384):629–639
(1981) Primary nephrotic syndrome in children: clinical significance of histopathologic variants of minimal change and of diffuse mesangial hypercellularity. A report of the International Study of Kidney Disease in Children. Kidney Int 20(6):765–771
Benoit G, Machuca E, Antignac C (2010) Hereditary nephrotic syndrome: a systematic approach for genetic testing and a review of associated podocyte gene mutations. Pediatr Nephrol 25(9):1621–1632
D’Agati VD, Fogo AB, Bruijn JA, Jennette JC (2004) Pathologic classification of focal segmental glomerulosclerosis: a working proposal. Am J Kidney Dis 43(2):368–382
Rüth EM, Kemper MJ, Leumann EP, Laube GF, Neuhaus TJ (2005) Children with steroid-sensitive nephrotic syndrome come of age: longterm outcome. J Pediatr 147(2):202–207
Smith JM, Stablein DM, Munoz R, Hebert D, McDonald RA (2007) Contributions of the Transplant Registry: the 2006 annual report of the North American Pediatric Renal Trials and Collaborative Studies (NAPRTCS). Pediatr Transplant 11(4):366–373
Banh TH, Hussain-Shamsy N, Patel V, Vasilevska-Ristovska J, Borges K, Sibbald C, Lipszyc D, Brooke J, Geary D, Langlois V, Reddon M, Pearl R, Levin L, Piekut M, Licht CP, Radhakrishnan S, Aitken-Menezes K, Harvey E, Hebert D, Piscione TD, Parekh RS (2016) Ethnic differences in incidence and outcomes of childhood nephrotic syndrome. Clin J Am Soc Nephrol 11(10):1760–1768
Fuchshuber A, Gribouval O, Ronner V, Kroiss S, Karle S, Brandis M, Hildebrandt F (2001) Clinical and genetic evaluation of familial steroid-responsive nephrotic syndrome in childhood. J Am Soc Nephrol 12(2):374–378
Bierzynska A, Soderquest K, Koziell A (2014) Genes and podocytes—new insights into mechanisms of podocytopathy. Front Endocrinol 5:226
Lovric S, Ashraf S, Tan W, Hildebrandt F (2016) Genetic testing in steroid-resistant nephrotic syndrome: when and how? Nephrol Dial Transplant 31(11):1802–1813
Bierzynska A, McCarthy HJ, Soderquest K, Sen ES, Colby E, Ding WY, Nabhan MM, Kerecuk L, Hegde S, Hughes D, Marks S, Feather S, Jones C, Webb NJ, Ognjanovic M, Christian M, Gilbert RD, Sinha MD, Lord GM, Simpson M, Koziell AB, Welsh GI, Saleem MA (2017) Genomic and clinical profiling of a national nephrotic syndrome cohort advocates a precision medicine approach to disease management. Kidney Int 91(4):937–947
Solanki AK, Widmeier E, Arif E, Sharma S, Daga A, Srivastava P, Kwon SH, Hugo H, Nakayama M, Mann N, Majmundar AJ, Tan W, Gee HY, Sadowski CE, Rinat C, Becker-Cohen R, Bergmann C, Rosen S, Somers M, Shril S, Huber TB, Mane S, Hildebrandt F, Nihalani D (2019) Mutations in KIRREL1, a slit diaphragm component, cause steroid-resistant nephrotic syndrome. Kidney Int 96(4):883–889
Nestor JG, Groopman EE, Gharavi AG (2018) Towards precision nephrology: the opportunities and challenges of genomic medicine. J Nephrol 31(1):47–60
Dufek S, Cheshire C, Levine AP, Trompeter RS, Issler N, Stubbs M, Mozere M, Gupta S, Klootwijk E, Patel V, Hothi D, Waters A, Webb H, Tullus K, Jenkins L, Godinho L, Levtchenko E, Wetzels J, Knoers N, Teeninga N, Nauta J, Shalaby M, Eldesoky S, Kari JA, Thalgahagoda S, Ranawaka R, Abeyagunawardena A, Adeyemo A, Kristiansen M, Gbadegesin R, Webb NJ, Gale DP, Stanescu HC, Kleta R, Bockenhauer D (2019) Genetic identification of two novel loci associated with steroid-sensitive nephrotic syndrome. J Am Soc Nephrol 30(8):1375–1384
Gbadegesin RA, Adeyemo A, Webb NJ, Greenbaum LA, Abeyagunawardena A, Thalgahagoda S, Kale A, Gipson D, Srivastava T, Lin JJ, Chand D, Hunley TE, Brophy PD, Bagga A, Sinha A, Rheault MN, Ghali J, Nicholls K, Abraham E, Janjua HS, Omoloja A, Barletta GM, Cai Y, Milford DD, O’Brien C, Awan A, Belostotsky V, Smoyer WE, Homstad A, Hall G, Wu G, Nagaraj S, Wigfall D, Foreman J, Winn MP, Mid-West Pediatric Nephrology Consortium (2015) HLA-DQA1 and PLCG2 Are Candidate Risk Loci for Childhood-Onset Steroid-Sensitive Nephrotic Syndrome. J Am Soc Nephrol 26(7):1701–1710
Debiec H, Dossier C, Letouzé E, Gillies CE, Vivarelli M, Putler RK, Ars E, Jacqz-Aigrain E, Elie V, Colucci M, Debette S, Amouyel P, Elalaoui SC, Sefiani A, Dubois V, Simon T, Kretzler M, Ballarin J, Emma F, Sampson MG, Deschênes G, Ronco PJ (2018) Transethnic, genome-wide analysis reveals immune-related risk alleles and phenotypic correlates in pediatric steroid-sensitive nephrotic syndrome. Am Soc Nephrol 29(7):2000–2013
Jia X, Horinouchi T, Hitomi Y, Shono A, Khor SS, Omae Y, Kojima K, Kawai Y, Nagasaki M, Kaku Y, Okamoto T, Ohwada Y, Ohta K, Okuda Y, Fujimaru R, Hatae K, Kumagai N, Sawanobori E, Nakazato H, Ohtsuka Y, Nakanishi K, Shima Y, Tanaka R, Ashida A, Kamei K, Ishikura K, Nozu K, Tokunaga K, Iijima K, Research Consortium on Genetics of Childhood Idiopathic Nephrotic Syndrome in Japan (2018) Strong association of the HLA-DR/DQ locus with childhood steroid-sensitive nephrotic syndrome in the Japanese population. J Am Soc Nephrol 29(8):2189–2199
AlAyadhi LY, Hashmi JA, Iqbal M, Albalawi AM, Samman MI, Elamin NE, Bashir S, Basit S (2016) High-resolution SNP genotyping platform identified recurrent and novel CNVs in autism multiplex families. Neuroscience 17(339):561–570
Basit S, Alharby E, Albalawi AM, Khoshhal KI (2018) Whole genome SNP genotyping in a family segregating developmental dysplasia of the hip detected runs of homozygosity on chromosomes 15q13.3 and 19p13.2. Congenit Anom (Kyoto) 58(2):56–61
Seelow D, Schuelke M, Hildebrandt F, Nürnberg P (2009) Homozygosity mapper—an interactive approach to homozygosity mapping. Nucleic Acids Res 37:W593–W599
Alharby E, Albalawi AM, Nasir A, Alhijji SA, Mahmood A, Ramzan K, Abdusamad F, Aljohani A, Abdelsalam O, Eldardear A, Basit S (2017) A homozygous potentially pathogenic variant in the PAXBP1 gene in a large family with global developmental delay and myopathic hypotonia. Clin Genet 92(6):579–586
Hashmi JA, Albarry MA, Almatrafi AM, Albalawi AM, Mahmood A, Basit S (2018) Whole exome sequencing identified a novel single base pair insertion mutation in the EYS gene in a six generation family with retinitis pigmentosa. Congenit Anom (Kyoto) 58(1):10–15
Basit S, Al-Harbi KM, Alhijji SA, Albalawi AM, Alharby E, Eldardear A, Samman MI (2016) CIT, a gene involved in neurogenic cytokinesis, is mutated in human primary microcephaly. Hum Genet 135(10):1199–1207
Al-Barry MA, Albalawi AM, Sayf MA, Badawi A, Afzal S, Latif M, Samman MI, Basit S (2016) Sequence analysis of four vitamin D family genes (VDR, CYP24A1, CYP27B1 and CYP2R1) in Vogt–Koyanagi–Harada (VKH) patients: identification of a potentially pathogenic variant in CYP2R1. BMC Ophthalmol 16(1):172
AbdulAzeez S, Borgio JF (2016) In-silico computing of the most deleterious nsSNPs in HBA1 gene. PLoS ONE 11(1):e0147702
Abdulazeez S (2019) Molecular simulation studies on B-cell lymphoma/leukaemia 11A (BCL11A). Am J Transl Res 11(6):3689–3697
Hecht M, Bromberg Y, Rost B (2015) Better prediction of functional effects for sequence variants. BMC Genomics 16(Suppl 8):S1
Shalhoub RJ (1974) Pathogenesis of lipid nephrosis: a disorder of T cell function. Lancet 2(7880):556–560
Trompeter RS, Barratt TM, Kay R, Turner MW, Soothill JF (1980) HLA, atopy and cyclophosphamide in steroid-responsive nephrotic syndrome. Kidney Int 17(1):113–117
Noss G, Bachmann HJ, Olbing H (1981) Association of minimal change nephrotic syndrome (MCNS) with HLA-B8 and B13. Clin Nephrol 15(4):172–174
Cambon-Thomsen A, Bouissou F, Abbal M, Duprat MP, Barthe P, Calot M, Ohayon E (1986) HLA and Bf in idiopathic nephrotic syndrome in children: differences between corticosensitive and corticoresistant forms. Pathol Biol (Paris) 34(6):725–730
Ruf RG, Fuchshuber A, Karle SM, Lemainque A, Huck K, Wienker T, Otto E, Hildebrandt F (2003) Identification of the first gene locus (SSNS1) for steroid-sensitive nephrotic syndrome on chromosome 2p. J Am Soc Nephrol 14(7):1897–1900
Hamdouch K, Rodríguez C, Pérez-Venegas J, Rodríguez I, Astola A, Ortiz M, Yen TJ, Bennani M, Valdivia MM (2011) Anti-CENPI autoantibodies in scleroderma patients with features of autoimmune liver diseases. Clin Chim Acta 412(23–24):2267–2271
Bien CG, Bauer J (2013) Pathophysiology of antibody-associated diseases of the central nervous system. Nervenarzt 84(4):466–470
Chang D, Gao F, Slavney A, Ma L, Waldman YY, Sams AJ, Billing-Ross P, Madar A, Spritz R, Keinan A (2014) Accounting for eXentricities: analysis of the X chromosome in GWAS reveals X-linked genes implicated in autoimmune diseases. PLoS ONE 9(12):e113684
Gliddon AE, Dore CJ, Dunphy J, Betteridge Z, McHugh NJ, QUINS Trial Study Group (2011) Antinuclear antibodies and clinical associations in a british cohort with limited cutaneous systemic sclerosis. J Rheumatol 38(4):702–705
Mandai S, Kanda E, Arai Y, Hirasawa S, Hirai T, Aki S, Inaba N, Aoyagi M, Tanaka H, Ikeda T, Tamura T, Sasaki S (2012) Anti-centromere antibody is an independent risk factor for chronic kidney disease in patients with primary biliary cirrhosis. Clin Exp Nephrol 17(3):405–410
Mandai S, Arai Y, Hirasawa S, Hirai T, Aki S, Inaba N, Aoyagi M, Tanaka H, Tamura T, Sasaki S (2012) Anti-centromere antibody-positive subjects presenting with hypertensive emergency and renal dysfunction in the absence of skin manifestations: a variant of systemic sclerosis or a novel entity? Intern Med 51(12):1567–1572
Haley CO, Waters AM, Bader DM (2019) Malformations in the murine kidney caused by loss of CENP-F function. Anat Rec (Hoboken) 302(1):163–170
Wu X, Lin Y, Shi L, Huang Y, Lai C, Wang Y, Zhang M, Wang S, Heng B, Yu G, Du X, Fang L, Fu Y, Chen J, Guo Z, Su Z, Wu S (2015) Upregulation of centromere protein H is associated with progression of renal cell carcinoma. J Mol Histol 46(4–5):377–385
Kobayashi N, Reiser J, Kriz W, Kuriyama R, Mundel P (1998) Nonuniform microtubular polarity established by CHO1/MKLP1 motor protein is necessary for process formation of podocytes. J Cell Biol 143(7):1961–1970
Kobayashi N, Reiser J, Schwarz K, Sakai T, Kriz W, Mundel P (2001) Process formation of podocytes: morphogenetic activity of microtubules and regulation by protein serine/threonine phosphatase PP2A. Histochem Cell Biol 115(3):255–266
Gödel M, Temerinac D, Grahammer F, Hartleben B, Kretz O, Riederer BM, Propst F, Kohl S, Huber TB (2015) Microtubule associated protein 1b (MAP1B) is a marker of the microtubular cytoskeleton in podocytes but is not essential for the function of the kidney filtration barrier in mice. PLoS ONE 10(10):e0140116
Colin E, Huynh Cong E, Mollet G, Guichet A, Gribouval O, Arrondel C, Boyer O, Daniel L, Gubler MC, Ekinci Z, Tsimaratos M, Chabrol B, Boddaert N, Verloes A, Chevrollier A, Gueguen N, Desquiret-Dumas V, Ferré M, Procaccio V, Richard L, Funalot B, Moncla A, Bonneau D, Antignac C (2014) Loss-of-function mutations in WDR73 are responsible for microcephaly and steroid-resistant nephrotic syndrome: Galloway–Mowat syndrome. Am J Hum Genet 95(6):637–648
Arai T, Okato A, Kojima S, Idichi T, Koshizuka K, Kurozumi A, Kato M, Yamazaki K, Ishida Y, Naya Y, Ichikawa T, Seki N (2017) Regulation of spindle and kinetochore-associated protein 1 by antitumor miR-10a-5p in renal cell carcinoma. Cancer Sci 108(10):2088–2101
Wang Xiaofu, Song Pan, Huang Chuiguo, Yuan Naijun, Zhao Xinghua, Changbao Xu (2019) Weighted gene co-expression network analysis for identifying hub genes in association with prognosis in Wilms tumor. Mol Med Rep 19(3):2041–2050
Amaro AC, Samora CP, Holtackers R, Wang E, Kingston IJ, Alonso M, Lampson M, McAinsh AD, Meraldi P (2010) Molecular control of kinetochore-microtubule dynamics and chromosome oscillations. Nat Cell Biol 12(4):319–329
Okada M, Cheeseman IM, Hori T, Okawa K, McLeod IX, Yates JR 3rd, Desai A, Fukagawa T (2006) The CENP-H-I complex is required for the efficient incorporation of newly synthesized CENP-A into centromeres. Nat Cell Biol 8(5):446–457
Cheeseman IM, Hori T, Fukagawa T, Desai A (2008) KNL1 and the CENP-H/I/K complex coordinately direct kinetochore assembly in vertebrates. Mol Biol Cell 19(2):587–594