Central quantile subspace
Tóm tắt
Quantile regression (QR) is becoming increasingly popular due to its relevance in many scientific investigations. There is a great amount of work about linear and nonlinear QR models. Specifically, nonparametric estimation of the conditional quantiles received particular attention, due to its model flexibility. However, nonparametric QR techniques are limited in the number of covariates. Dimension reduction offers a solution to this problem by considering low-dimensional smoothing without specifying any parametric or nonparametric regression relation. The existing dimension reduction techniques focus on the entire conditional distribution. We, on the other hand, turn our attention to dimension reduction techniques for conditional quantiles and introduce a new method for reducing the dimension of the predictor $$\mathbf {X}$$. The novelty of this paper is threefold. We start by considering a single index quantile regression model, which assumes that the conditional quantile depends on $$\mathbf {X}$$ through a single linear combination of the predictors, then extend to a multi-index quantile regression model, and finally, generalize the proposed methodology to any statistical functional of the conditional distribution. The performance of the methodology is demonstrated through simulation examples and real data applications. Our results suggest that this method has a good finite sample performance and often outperforms the existing methods.
Tài liệu tham khảo
Alkenani, A., Yu, K.: Penalized single-index quantile regression. Int. J. Stat. Probab. 2(3), 12–30 (2013)
Breiman, L., Friedman, J.H.: Estimating optimal transformations for multiple regression and correlation. J. Am. Stat. Assoc. 80(391), 580–598 (1985)
Brillinger, D.R.: A generalized linear model with ‘Gaussian’ regressor variables. In: Bickel, P.J., Doksum, K.A., Hodges, J.L. (eds.) A Festschrift for Erich L Lehmann. CRC Press, Wadsworth, Belmont, CA (1983)
Bura, E., Cook, R.D.: Extending sliced inverse regression: the weighted chi-squared test. J. Am. Stat. Assoc. 96(455), 996–1003 (2001)
Chaudhuri, P.: Nonparametric estimates of regression quantiles and their local Bahadur representation. Ann. Stat. 19(2), 760–777 (1991)
Chaudhuri, P., Doksum, K., Samarov, A.: On average derivative quantile regression. Ann. Stat. 25, 715–744 (1997)
Chiaromonte, F., Cook, R.D., Li, B.: Sufficient dimension reduction in regressions with categorical predictors. Ann. Stat. 30, 475–497 (2002)
Christou, E.: Robust dimension reduction using sliced inverse median regression. Stat. Pap. (2018). https://doi.org/10.1007/s00362-018-1007-z
Christou, E., Akritas, M.G.: Single index quantile regression for heteroscedastic data. J. Multivar. Anal. 150, 169–182 (2016)
Christou, E., Akritas, M.G.: Variable selection in heteroscedastic single index quantile regression. Commun. Stat. Theory Methods 47, 6019–6033 (2018)
Christou, E., Grabchak, M.: Estimation of value-at-risk using single index quantile regression. J. Appl. Stat. 46(13), 2418–2433 (2019)
Cont, R.: Empirical properties of asset returns: stylized facts and statistical issues. Quant. Finance 1(2), 223–236 (2001)
Cook, R.D.: Regression Graphics: Ideas for Studying Regressions Through Graphics. Wiley, New York (1998)
Cook, R.D., Li, B.: Dimension reduction for conditional mean in regression. Ann. Stat. 30(2), 455–474 (2002)
Cook, R.D., Nachtsheim, C.J.: Reweighting to achieve elliptically contoured covariates in regression. J. Am. Stat. Assoc. 89(426), 592–599 (1994)
Cook, R.D., Weisberg, S., Li, K.-C.: Comment on “Sliced inverse regression for dimension reduction”. J. Am. Stat. Assoc. 86, 328–332 (1991)
Diaconis, P., Freedman, D.: Asymptotics of graphical projection pursuit. Ann. Stat. 12, 793–815 (1984)
Dong, Y., Li, B.: Dimension reduction for non-elliptically distributed predictors: second-order methods. Biometrika 97, 279–294 (2010)
Fan, Y., Härdle, W.K., Wang, W., Zhu, L.: Single-index-based CoVaR with very high-dimensional covariates. J. Bus. Econ. Stat. 36(2), 212–226 (2018)
Gooijer, J.G., Zerom, D.: On additive conditional quantiles with high-dimensional covariates. J. Am. Stat. Assoc. 98(461), 135–146 (2003)
Grocer, S.: Beware the risks of the bitcoin: winklevii outline the downside. Wall Street J. (2013). https://blogs.wsj.com/moneybeat/2013/07/02/beware-the-risks-of-the-bitcoin-winklevii-outline-the-downside/
Guerre, E., Sabbah, C.: Uniform bias study and Bahadur representation for local polynomial estimators of the conditional quantile function. Econom. Theory 28(01), 87–129 (2012)
Harrison, D., Rubinfeld, D.L.: Hedonic prices and the demand for clean air. J. Environ. Econ. Manag. 5, 81–102 (1978)
Hristache, M., Juditsky, A., Polzehl, J., Spokoiny, V.: Structure adaptive approach for dimension reduction. Ann. Stat. 29(6), 1537–1566 (2001)
Jiang, R., Zhou, Z.-G., Qian, W.-M., Chen, Y.: Two step composite quantile regression for single-index models. Comput. Stat. Data Anal. 64, 180–191 (2013)
Koenker, R., Bassett, G.: Regression quantiles. Econometrica 46, 33–50 (1978)
Kong, E., Xia, Y.: A single-index quantile regression model and its estimation. Econom. Theory 28, 730–768 (2012)
Kong, E., Xia, Y.: An adaptive composite quantile approach to dimension reduction. Ann. Stat. 42(4), 1657–1688 (2014)
Kong, E., Linton, O., Xia, Y.: Uniform Bahadur representation for local polynomial estimates of M-regression and its application to the additive model. Econom. Theory 26, 1529–1564 (2010)
Li, K.-C.: Sliced inverse regression for dimension reduction. J. Am. Stat. Assoc. 86(414), 316–327 (1991)
Li, K.-C.: On Principal Hessian directions for data visualization and dimension reduction: another application of Stein’s Lemma. J. Am. Stat. Assoc. 87(420), 1025–1039 (1992)
Li, B., Dong, Y.: Dimension reduction for nonelliptically distributed predictors. Ann. Stat. 37, 1272–1298 (2009)
Li, K.-C., Duan, N.: Regression analysis under link violation. Ann. Stat. 17(3), 1009–1052 (1989)
Li, B., Wang, S.: On directional regression for dimension reduction. J. Am. Stat. Assoc. 102(479), 997–1008 (2007)
Li, B., Zha, H., Chiaromonte, F.: Contour regression: a general approach to dimension reduction. Ann. Stat. 33(4), 1580–1616 (2005)
Luo, W., Li, B., Yin, X.: On efficient dimension reduction with respect to a statistical functional of interest. Ann. Stat. 42(1), 382–412 (2014)
Ma, Y., Zhu, L.: A semiparametric approach to dimension reduction. J. Am. Stat. Assoc. 107(497), 168–179 (2012)
Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). Available online. https://bitcoin.org/bitcoin.pdf
Pollard, D.: Asymptotics for least absolute deviation regression estimators. Econom. Theory 7(2), 186–199 (1991)
Shin, S.J., Artemiou, A.: Penalized principal logistic regression for sparse sufficient dimension reduction. Comput. Stat. Data Anal. 111, 48–58 (2017)
Wang, H., Xia, Y.: Sliced regression for dimension reduction. J. Am. Stat. Assoc. 103, 811–821 (2008)
Wu, T.Z., Yu, K., Yu, Y.: Single index quantile regression. J. Multivar. Anal. 101(7), 1607–1621 (2010)
Xia, Y., Tong, H., Li, W.K., Zhu, L.-X.: An adaptive estimation of dimension reduction space. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 64, 363–410 (2002)
Ye, Z., Weiss, R.E.: Using the bootstrap to select one of a new class of dimension reduction methods. J. Am. Stat. Assoc. 98(464), 968–979 (2003)
Yin, X., Cook, R.D.: Dimension reduction for the conditional \(k\)th moment in regression. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 62, 159–175 (2002)
Yin, X., Li, B.: Sufficient dimension reduction based on an ensemble of minimum average variance estimators. Ann. Stat. 39, 3392–3416 (2011)
Yu, K., Jones, M.C.: Local linear quantile regression. J. Am. Stat. Assoc. 93(441), 228–238 (1998)
Yu, K., Lu, Z.: Local linear additive quantile regression. Scand. J. Stat. 31, 333–346 (2004)
Zhang, L.-M., Zhu, L.-P., Zhu, L.-X.: Sufficient dimension reduction in regressions through cumulative Hessian directions. Stat. Comput. 21(3), 325–334 (2011)
Zhu, L.-P., Zhu, L.-X.: Dimension reduction for conditional variance in regressions. Stat. Sin. 19, 869–883 (2009)
Zhu, L.-P., Zhu, L.-X., Feng, Z.-H.: Dimension reduction in regression through cumulative slicing estimation. J. Am. Stat. Assoc. 105(492), 1455–1466 (2010)
Zhu, X., Guo, X., Zhu, L.: An adaptive-to-model test for partially parametric single-index models. Stat. Comput. 27(5), 1193–1204 (2017)