Central Limit Theorems for Non-Symmetric Random Walks on Nilpotent Covering Graphs: Part II

Springer Science and Business Media LLC - Tập 55 - Trang 127-166 - 2020
Satoshi Ishiwata1, Hiroshi Kawabi2, Ryuya Namba3
1Department of Mathematical Sciences, Faculty of Science, Yamagata University, Yamagata, Japan
2Department of Mathematics, Keio University, Yokohama, Japan
3Department of Mathematical Sciences, College of Science and Engineering, Ritsumeikan University, Kusatsu, Japan

Tóm tắt

In the present paper, as a continuation of our preceding paper (Ishiwata et al. 2018), we study another kind of central limit theorems (CLTs) for non-symmetric random walks on nilpotent covering graphs from a view point of discrete geometric analysis developed by Kotani and Sunada. We introduce a one-parameter family of random walks which interpolates between the original non-symmetric random walk and the symmetrized one. We first prove a semigroup CLT for the family of random walks by realizing the nilpotent covering graph into a nilpotent Lie group via discrete harmonic maps. The limiting diffusion semigroup is generated by the homogenized sub-Laplacian with a constant drift of the asymptotic direction on the nilpotent Lie group, which is equipped with the Albanese metric associated with the symmetrized random walk. We next prove a functional CLT (i.e., Donsker-type invariance principle) in a Hölder space over the nilpotent Lie group by combining the semigroup CLT, standard martingale techniques, and a novel pathwise argument inspired by rough path theory. Applying the corrector method, we finally extend these CLTs to the case where the realizations are not necessarily harmonic.

Tài liệu tham khảo

Alexopoulos, G.: Convolution powers on discrete groups of polynomial volume growth. Canad. Math. Soc. Conf. Proc. 21, 31–57 (1997) Alexopoulos, G.: Random walks on discrete groups of polynomial growth. Ann. Probab. 30, 723–801 (2002) Alexopoulos, G.: Sub-Laplacians with drift on Lie groups of polynomial volume growth. Mem. Amer. Math. Soc. 155(739) (2002) Bensoussan, A., Lions, J.L., Papanicolaou, G.: Asymptotic Analysis for Periodic Structures. Studies in Mathematics and its Applications, vol. 5. North-Holland Publishing Co., Amsterdam (1978) Biskup, M: Recent progress on the random conductance model. Probab. Surv. 8, 294–373 (2011) Friz, P.K., Victoir, N.B.: Multidimensional Stochastic Processes as Rough Paths, Theory and Applications, Cambridge Studies in Advanced Mathematics, vol. 120. Cambridge Univ. Press, Cambridge (2010) Gromov, M.: Groups of polynomial growth and expanding maps. IHES Publ. Math. 53, 53–73 (1981) Ishiwata, S.: A central limit theorem on a covering graph with a transformation group of polynomial growth. J. Math. Soc. Japan 55, 837–853 (2003) Ishiwata, S., Kawabi, H., Kotani, M.: Long time asymptotics of non-symmetric random walks on crystal lattices. J. Funct. Anal. 272, 1553–1624 (2017) Ishiwata, S., Kawabi, H., Namba, R.: Central limit theorems for non-symmetric random walks on nilpotent covering graphs. Part I. Electron. J. Probab. 25, 46 pages (2020) Kipnis, C., Landim, C.: Scaling Limits of Interacting Particle Systems Grundlehren der mathematischen Wissenschaften, vol. 320. Springer, Berlin (1999) Kotani, M.: A central limit theorem for magnetic transition operators on a crystal lattice. J. London Math. Soc. 65, 464–482 (2002) Kotani, M.: An asymptotic of the large deviation for random walks on a crystal lattice. Contemp. Math. 347, 141–152 (2004) Kotani, M., Sunada, T.: Albanese maps and off diagonal long time asymptotics for the heat kernel. Comm. Math. Phys. 209, 633–670 (2000) Kotani, M., Sunada, T.: Standard realizations of crystal lattices via harmonic maps. Trans. Amer. Math. Soc. 353, 1–20 (2000) Kotani, M., Sunada, T.: Large deviation and the tangent cone at infinity of a crystal lattice. Math. Z. 254, 837–870 (2006) Kotani, M., Shirai, T., Sunada, T.: Asymptotic behavior of the transition probability of a random walk on an infinite graph. J. Funct. Anal. 159, 664–689 (1998) Kozlov, S.M.: The averaging method and walks in inhomogeneous environments. Russian Math. Surveys 40, 73–145 (1985) Kumagai, T.: Random Walks on Disordered Media and their Scaling Limits, École d’Été de Probabilités de Saint-Flour XL-2010, LNM 2101. Springer, Cham (2014) Lyons, T., Caruana, M., Lévy, T.: Differential Equations Driven by Rough Paths, École d’Été de Probabilités de Saint-Flour XXXIV-2004, LNM 1908. Springer, Berlin (2007) Lyons, T: Differential equations driven by rough signals. Rev. Math. Iberoamericana 14, 215–310 (1998) Lyons, T., Qian, Z.: System Control and Rough Paths, Oxford Mathematical Monographs. Oxford Univ. Press, Oxford (2002) Malćev, A.I.: On a class of homogeneous spaces. Amer. Math. Soc. Transl. 39, 276–307 (1951) Namba, R.: Central limit theorems for non-symmetric random walks on covering graphs, Ph.D. thesis at Okayama University, available at http://ousar.lib.okayama-u.ac.jp/files/public/5/56797/20190625084049750154/K0005956_fulltext.pdf (2019) Pap, G.: Central Limit Theorems on Stratified Lie Groups, Probability Theory and Mathematical Statistics (Vilnius, 1993), pp 613–627. TEV, Vilnius (1994) Papanicolaou, G.C., Varadhan, S.R.S.: Boundary value problem with rapidly oscillating random coefficients. In: Random Fields, Vol. I, II (Esztergom, 1979), Colloq. Math. Soc. János Bolyai, 27, pp 835–873. North-Holland, Amsterdam-New York (1981) Raghunathan, M.S.: Discrete Subgroups of Lie Groups. Springer, Berlin (1972) Raugi, A: Thèoréme de la limite centrale sur les groupes nilpotents. Z. Wahrsch. Verw. Gebiete. 43, 149–172 (1978) Robinson, D.W.: Elliptic Operators and Lie Groups, Oxford Mathematical Mono- graphs. Oxford Univ. Press, New York (1991) Stroock, D.W.: Probability Theory: An Analytic View. Cambridge Univ. Press (1993) Sunada, T.: Discrete Geometric Analysis. In: Proc. Sympos. Pure Math. 77, Amer. Math. Soc. Analysis on Graphs and its Applications, pp 51–83, Providence (2008) Sunada, T.: Topological Crystallography with a View Towards Discrete Geometric Analysis, Surveys and Tutorials in the Applied Mathematical Sciences, vol. 6. Springer, Japan (2013) Sunada, T.: Topics in mathematical crystallography. In: The Preceedings of the Symposium “Groups, Graphs and Random Walks”, London Math. Soc., Lecture Note Series, vol. 436, pp 473–513. Cambridge Univ. Press (2017) Tanaka, R: Hydrodynamic limit for weakly asymmetric simple exclusion processes in crystal lattices. Comm. Math. Phys. 315, 603–641 (2012) Trotter, H.F.: Approximation of semi-groups of operators. Pac. J. Math. 8, 887–919 (1958) Varopoulos, N.T., Saloff-Coste, L., Coulhon, T.: Analysis and Geometry on Groups, Cambridge Tracts in Mathematics, vol. 100. Cambridge Univ. Press, Cambridge (1992)