Thiết kế tổ hợp trung tâm (CCD) áp dụng cho tối ưu hóa thống kê hỗn hợp carbon nhị phân glucose và sucrose trong việc nâng cao quá trình khử nitrat

Jun-Wei Lim1, Hoe-Guan Beh1, Dennis Ling Chuan Ching1, Yeek-Chia Ho2, Lavania Baloo2, Mohammed J. K. Bashir3, Seng-Kew Wee4
1Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
2Department of Civil and Environmental Engineering, Universiti Teknologi Petronas, Seri Iskandar, Malaysia
3Department of Environmental Engineering, Faculty of Engineering and Green Technology (FEGT), Universiti Tunku Abdul Rahman, Kampar, Malaysia
4Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli, Malaysia

Tóm tắt

Nghiên cứu này cung cấp cái nhìn sâu sắc về việc tối ưu hóa hỗn hợp glucose và sucrose nhằm tăng cường quá trình khử nitrat. Thiết kế tổ hợp trung tâm đã được áp dụng để thiết kế các thí nghiệm lần lượt với các yếu tố glucose và sucrose được đo lường theo tỷ lệ carbon:nitrogen (C:N) và phản ứng là tỷ lệ phần trăm loại bỏ nitrat-nitrogen (NO3−–N). Kết quả cho thấy mô hình hồi quy đa thức của việc loại bỏ NO3−–N đã được xây dựng thành công, có khả năng mô tả các mối quan hệ tương tác của hỗn hợp glucose và sucrose ảnh hưởng đến quá trình khử nitrat. Hơn nữa, sự có mặt của glucose đã cho thấy tác động đáng kể hơn đối với việc loại bỏ NO3−–N so với sucrose. Hỗn hợp nguồn carbon tối ưu để đạt được việc loại bỏ hoàn toàn NO3−–N yêu cầu ít glucose hơn (tỷ lệ C:N là 1,0:1,0) so với sucrose (tỷ lệ C:N là 2,4:1,0). Tại hỗn hợp glucose và sucrose tối ưu, bùn hoạt tính cho thấy khả năng thích nghi nhanh hơn với glucose được sử dụng để thực hiện quá trình khử nitrat. Sau đó, khi thích nghi với sucrose, tốc độ hấp thu glucose bởi bùn hoạt tính đã giảm. Do đó, việc tối ưu hóa hỗn hợp nguồn carbon bổ sung là rất quan trọng để đảm bảo việc loại bỏ nhanh chóng và hoàn toàn NO3−–N thông qua quá trình khử nitrat.

Từ khóa


Tài liệu tham khảo

Abdullah S (2012) Water resource users in Malaysia: issues and challenges, Malaysia Water Resources Management Forum 2012. “Time for Solutions”. Perbadanan Putrajaya, Putrajaya

APHA (1998) Standard methods for the examination of water and wastewater, 20th edn. APHA, AWWA, WPCF, American Public Health Association, Washington, DC

Garcia F, Ciceron D, Saboni A, Alexandrova S (2006) Nitrate ions elimination from drinking water by nanofiltration: membrane choice. Sep Purif Technol 52(1):196–200

Gomez MA, Gonzalez-Lopez J, Hontoria-Garcia E (2000) Influence of carbon source on nitrate removal of contaminated groundwater in a denitrifying submerged filter. J Hazard Mater 80(1–3):69–80

He Q, He Z, Joyner DC, Joachimiak M, Price MN, Yang ZK, Yen HCB, Hemme CL, Chen W, Fields MW, Stahl DA, Keasling JD, Keller M, Arkin AP, Hazen TC, Wall JD, Zhou J (2010) Impact of elevated nitrate on sulphate-reducing bacteria: a comparative study of Desulfovibrio vulgaris. ISME J 4(11):1386–1397

Her JJ, Huang JS (1995) Influences of carbon source and C/N ratio on nitrate/nitrite denitrification and carbon breakthrough. Bioresour Technol 54(1):45–51

Ismail WR, Sarju H, Mansor M (2007) Water quality of streams and wells of North Perlis: a comparative analysis. Malaysian J Environ Manage 8:69–85

Leong KY, See S, Lim JW, Bashir MJK, Ng CA, Tham L (2016) Effect of process variables interaction on simultaneous adsorption of phenol and 4-chlorophenol: statistical modeling and optimization using RSM. Appl Water Sci. doi:10.1007/s13201-016-0381-8

Lim JW, Lim PE, Seng CE, Adnan R (2013) Evaluation of aeration strategy in moving bed sequencing batch reactor performing simultaneous 4-chlorophenol and nitrogen removal. Appl Biochem Biotechnol 170(4):831–840

Lim JW, Lim PE, Seng CE, Adnan R (2014a) Alternative solid carbon source from dried attached-growth biomass for nitrogen removal enhancement in intermittently aerated moving bed sequencing batch reactor. Environ Sci Pollut Res 21(1):485–494

Lim JW, Bashir MJK, Ng CA, Guo X (2014b) Supplementation of novel solid carbon source prepared from dried attached-growth biomass for bioremediation of wastewater containing nitrogen. Wastewater engineering: advanced wastewater treatment systems. Int J Sci Res Books. doi:10.12983/1-2014-03-01

Liu H, Jiang W, Wan D, Qu J (2009) Study of a combined heterotrophic and sulfur autotrophic denitrification technology for removal of nitrate in water. J Hazard Mater 169(1–3):23–28

Lorrain MJ, Tartakovsky B, Peisajovich-Gilkstein A, Guiot SR (2004) Comparison of different carbon sources for ground water denitrification. Environ Technol 25(9):1041–1049

Mohamed Zawawi MA, Yusoff MK, Hussain H, Nasir S (2010) Nitrate-nitrogen concentration variation in groundwater flow in a paddy field. Inst Eng Malaysia 71(4):2–10

Mukkata K, Kantachote D, Wittayaweerasak B, Techkarnjanaruk S, Boonapatcharoen N (2016) Diversity of purple nonsulfur bacteria in shrimp ponds with varying mercury levels. Saud J Biol Sci 23(4):478–487

Myers RH, Montgomery DC, Anderson-Cook CM (2009) Response surface methodology, process and product optimization using designed experiments, 3rd edn. Wiley, Hoboken

Paul JW, Beauchamp EG, Trevors JT (1989) Acetate, propionate, butyrate, glucose, and sucrose as carbon sources for denitrifying bacteria in soil. Can J Microbiol 35(8):754–759

Shen Z, Zhou Y, Wang J (2013) Comparison of denitrification performance and microbial diversity using starch/polylactic acid blends and ethanol as electron donor for nitrate removal. Bioresour Technol 131:33–39

Silva SA, Cavaleiro AJ, Pereira MA, Stams AJM, Alves MM, Sousa DZ (2014) Long-term acclimation of anaerobic sludges for high-rate methanogenesis from LCFA. Biomass Bioenerg 67:297–303

Simek M, Jisova L, Hopkins DW (2002) What is the so-called optimum pH for denitrification in soil? Soil Biol Biochem 34(9):1227–1234

Tong S, Chen N, Wang H, Liu H, Tao C, Feng C, Zhang B, Hao C, Pu J, Zhao J (2014) Optimization of C/N and current density in a heterotrophic/biofilm-electrode autotrophic denitrification reactor (HAD-BER). Bioresour Technol 171:389–395

Wilson DJ, Clarke AN (1994) Hazardous waste site soil remediation: theory and application of innovative technologies. Marcel Dekker Inc, New York

Xie L, Chen J, Wang R, Zhou Q (2012) Effect of carbon source and COD/NO3 −–N ratio on anaerobic simultaneous denitrification and methanogenesis for high-strength wastewater treatment. J Biosci Bioeng 113(6):759–764

Yang XL, Jiang Q, Song HL, Gu TT, Xia MQ (2015) Selection and application of agricultural wastes as solid carbon sources and biofilm carriers in MBR. J Hazard Mater 283:186–192

Zhang J, Feng C, Hong S, Hao H, Yang Y (2012) Behavior of solid carbon sources for biological denitrification in groundwater remediation. Water Sci Technol 65(9):1696–1704