Centipeda minima (Ebushicao) extract inhibits PI3K-Akt-mTOR signaling in nasopharyngeal carcinoma CNE-1 cells

Chinese Medicine - Tập 10 - Trang 1-9 - 2015
Yu-qing Guo1,2, Hai-yan Sun1,2, Chi-on Chan2, Bei-bei Liu2, Jian-hong Wu2, Shun-wan Chan2, Daniel Kam-Wah Mok2, Anfernee Kai-Wing Tse3, Zhi-ling Yu3, Si-bao Chen1,2
1Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
2State Key Laboratory of Chinese Medicine and Molecular Pharmacology, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Shenzhen, People’s Republic of China
3School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, People’s Republic of China

Tóm tắt

Centipeda minima (Ebushicao) has been used for the treatment of various diseases, such as nasal allergies, rhinitis and sinusitis, nasopharyngeal carcinoma, cough, and headache. This study aims to investigate the anticancer activities of Centipeda minima ethanol extracts (CME) against nasopharyngeal carcinoma cell CNE-1 and their underlying mechanism. CNE-1 cells were treated with different concentrations (15–50 μg/mL) of CME for different time intervals (24, 48, and 72 h). Cytotoxicity of CME was determined by MTT assay. Cell morphological changes were observed by fluorescence microscopy after HO 33258 staining. Cell cycle status was evaluated by flow cytometry following propidium iodide staining. Apoptosis was detected by flow cytometry following annexin V-FITC/PI staining. The levels of apoptosis-associated and PI3K-Akt-mTOR signaling related proteins were measured by western blotting analysis. CME (15–50 μg/mL) significantly inhibited the proliferation of CNE-1 in a dose- and time-dependent manner (P = 0.026 for 15 μg/mL, P < 0.001 for 25, 30, 40, and 50 μg/mL, respectively); the IC50 values (μg/mL) were 41.57 ± 0.17, 30.34 ± 0.06 and 24.98 ± 0.08 for 24, 48 and 72 h treatments, respectively. Significant morphological changes of CNE-1 cells displaying apoptosis were observed after CME treatment. CME showed low cytotoxicity toward normal LO2 cells. CNE-1 cells were arrested in the G2/M phase while treated with 15, 25, 40 μg/mL of CME, respectively (P = 0.032, P = 0.0053, P < 0.001). CME (15, 25, 40 μg/mL) down-regulated Bcl-2 expression (P = 0.032, P = 0.0074, P < 0.001), and up-regulated Bax (P = 0.026, P = 0.0056, P < 0.001) with activation of caspase-3, caspase-8, caspase-9, and PARP observed in CNE-1 cells (P = 0.015, P = 0.0067, P < 0.001 for caspase 3; P = 0.210, 0.028, < 0.001 for caspase 8; P = 0.152, 0.082, 0.0080 for caspase 9; P = 0.265, 0.0072, < 0.001 for PARP). CME suppressed the activation of the PI3K-AKT-mTOR pathway (P = 0.03, 0.0007, 0.004, 0.006, 0.022 for p-PI3K, p-Akt-Ser473, p-Akt-Thr308, p-mTOR-Ser2448, p-mTOR-Ser2481, respectively after 40 μg/mL of CME treated for 24 h). CME inhibited the proliferation of CNE-1 cells and activation of the PI3K-AKT-mTOR signaling pathway.

Tài liệu tham khảo

Yu MC, Yuan JM. Epidemiology of nasopharyngeal carcinoma. Semin Cancer Biol. 2002;12:421–9. Raab-Traub N. Epstein—Barr virus in the pathogenesis o f NPC. Semin Cancer Biol. 2002;12:431–41. Tao Q, Young LS, Woodman CB, Murray PG. Epstein-Barr virus (EBV) and its associated human cancers-genetics, epigenetics, pathobiology and novel therapeutics. Front Biosci. 2006;11:2672–713. Lo Angela KF, Dawson CW, Jin DY, Lo KW. The pathological roles of BART miRNAs in nasopharngeal carcinoma. J Pathol. 2012;227:392–403. Lee N, Xia P, Quivey JM, Sultanem K, Poon I, Akazawa C, Akazawa P, Weinberg V, Fu KK. Intensity-modulated radiotherapy in the treatment of nasopharyngeal carcinoma: an update of the UCSF experience. Int J Radiat Oncol Biol Phys. 2002;53:12–22. Chan AT, Teo PM, Ngan RK, Leung TW, Lau WH, Zee B, Leung SF, Cheung FY, Yeo W, Yiu HH, Yu KH, Chiu KW, Chan DT, Mok T, Yuen KT, Mo F, Lai M, Kwan WH, Choi P, Johnson PJ. Concurrent chemotherapy-radio-therapy compared with radiotherapy alone in loco regionally advanced nasopharyngeal carcinoma: progression-free survival analysis of a phase III randomized trial. J Clin Oncol. 2002;20:2038–44. Cheng SH, Jian JJ, Tsai SY, Yen KL, Chu NM, Chan KY, Tan TD, Cheng JC, Leu SY, Hsieh CY, Huang AT. Long-term survival of nasopharyngeal carcinoma following concomitant radiotherapy and chemotherapy. Int J Radiat Oncol. 2000;48:1323–30. Xie SM, Fang WY, Liu Z, Wang SX, Li X, Liu TF, Xie WB, Yao KT. Lentivirus-mediated RNAi silencing targeting ABCC2 increasing the sensitivity of a human nasopharyngeal carcinoma cell line against cisplatin. J Transl Med. 2008;6:55–63. Cho WC, Chen HY. Clinical efficacy of traditional Chinese medicine as a concomitant therapy for nasopharyngeal carcinoma: a systematic review and meta-analysis. Cancer Invest. 2009;27:334–44. Li X, Yang GY, Li XX, Zhang Y, Yang JL, Chang J, Sun XX, Zhou XY, Guo Y, Xu Y, Liu J, Bensoussan A. Traditional Chinese medicine in cancer care: a review of controlled clinical studies published in Chinese. PLoS One. 2013;8:e60338. Wei BH. Progression on treatment of nasopharyngeal carcinoma by combined therapy of radiation and Chinese herbal medicine. Zhongguo Zhong Xi Yi Jie He Za Zhi. 2001;21:477–9. Liu HH, Peng H, Ji ZH, Zhao SW, Zhang YF, Wu J, Fan JP, Liao JC. Reactive oxygen species-mediated mitochondrial dysfunction is involved in apoptosis in human nasopharyngeal carcinoma CNE cells induced by Selaginella doederleinii extract. J Ethnopharmacol. 2011;138:184–91. Su MX, Wu P, Li YL, Chung HY. Antiproliferative effects of volatile oils from Centipeda minima on human nasopharyngeal cancer CNE cells. Nat Prod Commun. 2010;5:151–6. Shi Z, Fu GX. Flora of China, vol. 76. Beijing: Science Publishing House; 1983. p. 132. China Pharmacopoeia Committee. Pharmacopoeia of the People’s Republic of China, 1st division of 2010 edition. Beijing: Chinese Medicine And Technology Publishing House; 2010. p. 326. Su MX, Li YL, Chung HY, Ye WC. 2β-(Isobutyryloxy) florilenalin, a sesquiterpene lactone isolated from the medicinal plant Centipeda minima, induces apoptosis in human nasopharyngeal carcinoma CNE cells. Molecules. 2009;14:2135–46. Wu P, Li XG, Liang N, Wang GC, Ye WC, Zhou GX, Li YL. Two new sesquiterpene lactones from the supercritical fluid extract of Centipeda minima. J Asian Nat Prod Res. 2012;14:515–20. Wu P, Su MX, Wang Y, Wang GC, Ye WC, Chung HY, Li J, Jiang RW, Li YL. Supercritical fluid extraction assisted isolation of sesquiterpene lactones with antiproliferative effects from Centipeda minima. Phytochemistry. 2012;76:133–40. Su MX, Chung HY, Li YL. Deoxyelephantopin from Elephantopus scaber L. induces cell-cycle arrest and apoptosis in the human nasopharyngeal cancer CNE cells. Biochem Biophys Res Commun. 2011;2011(411):342–7. Van Meerloo J, Kaspers GJ, Cloos J. Cell sensitivity assays: the MTT assay. Method Mol Biol. 2011;731:237–45. Weinert TA, Hartwell LH. Cell cycle arrest of cdc mutants and specificity of the RAD9 checkpoint. Genetics. 1993;134:63–80. Zou H, Li Y, Liu X, Wang X. An APAF-1.cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem. 1999;274:11549–56. Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli KJ, Debatin KM, Krammer PH, Peter ME. Two CD95 (APO-1/Fas) signaling pathways. EMBO J. 1998;17:1675–87. Wilson MR. Apoptotic signal transduction: emerging pathways. Biochem Cell Biol. 1998;76:573–82. Korsmeyer SJ, Wei MC, Saito M, Weiler S, Oh J, Schlesinger PH. Pro-apoptotic cascade activates BID, which oligomerized BAK or BAX into pores that result in the release of cytochrome C. Cell Death Differ. 2000;7:1166–73. Wolter KG, Hsu YT, Smith CL, Nechushtan A, Xi XG, Youle RJ. Movement of Bax from the cytosol to mitochondria during apoptosis. J Cell Biol. 1997;139:1281–92. Bruce-Keller AJ, Begley JG, Fu W, Butterfield DA, Bredesen DE, Hutchins JB, Hensley K, Mattson MP. Bcl-2 protects isolated plasma and mitochondrial membranes against lipid peroxidation induced by hydrogen peroxide and amyloid beta-peptide. J Neurochem. 1998;70:31–9. Hay N. The Akt-mTOR tango and its relevance to cancer. Cancer Cell. 2005;8:179–83. Engelman JA, Luo J, Cantley LC. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet. 2006;7:606–19. Ocana A, Vera-Badillo F, Al-Mubarak M, Templeton AJ, Corrales-Sanchez V, Diez-Gonzalez L, Cuenca-Lopez MD, Seruga B, Pandiella A, Amir E. Activation of the PI3K/mTOR/AKT pathway and survival in solid tumors: systematic review and meta-analysis. PLoS One. 2014;9:e95219. Choe G, Horvath S, Cloughesy TF, Crosby K, Seligson D, Palotie A, Inge L, Smith BL, Sawyers CL, Mischel PS. Analysis of the phosphatidylinositol 3′-kinase signaling pathway in glioblastoma patients in vivo. Cancer Res. 2003;63:2742–6. Xie M, Yi X, Wang R, Wang L, He G, Zhu M, Qi C, Liu Y, Ye Y, Tan S, Tang A. 14-thienyl methylene matrine (YYJ18), the derivative from matrine, induces apoptosis of human nasopharyngeal carcinoma cells by targeting MAPK and PI3K/Akt pathways in vitro. Cell Physiol Biochem. 2014;33:1475–83.