Cellulose-based Li-ion batteries: a review

Springer Science and Business Media LLC - Tập 20 Số 4 - Trang 1523-1545 - 2013
Lara Jabbour1, Roberta Maria Bongiovanni2, Didier Chaussy1, Claudio Gerbaldi2, Davide Beneventi1
1LGP2/Grenoble INP-Pagora/CNRS, Domaine Universitaire, 461 rue de la papeterie, 38402, St. Martin d’Héres, France
2Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy

Tóm tắt

Từ khóa


Tài liệu tham khảo

Alloin F, D’Aprea A, Kissi NE et al (2010) Nanocomposite polymer electrolyte based on whisker or microfibrils polyoxyethylene nanocomposites. Electrochim Acta 55:5186–5194. doi: 10.1016/j.electacta.2010.04.034

Aricò AS, Bruce P, Scrosati B et al (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377. doi: 10.1038/nmat1368

Armand M, Tarascon J-M (2008) Building better batteries. Nature 451:652–657. doi: 10.1038/451652a

Armand M, Chabagno JM, Duclot M (1978) Second international meeting on solid electrolytes. Extended Abstracts. St. Andrews, 2022

Arora P, Zhang ZJ (2004) Battery separators. Chem Rev 104:4419–4462. doi: 10.1021/cr020738u

Assaf AG, Haas RH, Purves CB (1944) A new interpretation of the cellulose–water adsorption isotherm and data concerning the effect of swelling and drying on the colloidal surface of cellulose1, 2. J Am Chem Soc 66:66–73. doi: 10.1021/ja01229a020

Azizi Samir MAS, Alloin F, Gorecki W et al (2004a) Nanocomposite polymer electrolytes based on poly(oxyethylene) and cellulose nanocrystals. J Phys Chem B 108:10845–10852. doi: 10.1021/jp0494483

Azizi Samir MAS, Alloin F, Sanchez JY, Dufresne A (2004b) Cellulose nanocrystals reinforced poly(oxyethylene). Polymer 45:4149–4157. doi: 10.1016/j.polymer.2004.03.094

Azizi Samir MAS, Alloin F, Sanchez JY, Dufresne A (2004c) Cross-linked nanocomposite polymer electrolytes reinforced with cellulose whiskers. Macromolecules 37:4839–4844. doi: 10.1021/ma049504y

Azizi Samir MAS, Mateos AM, Alloin F et al (2004d) Plasticized nanocomposite polymer electrolytes based on poly(oxyethylene) and cellulose whiskers. Electrochim Acta 49:4667–4677. doi: 10.1016/j.electacta.2004.05.021

Azizi Samir MAS, Alloin F, Sanchez JY, Dufresne A (2005a) Nanocomposite polymer electrolytes based on poly(oxyethylene) and cellulose whiskers. Polímeros 15:109–113. doi: 10.1590/S0104-14282005000200009

Azizi Samir MAS, Chazeau L, Alloin F et al (2005b) POE-based nanocomposite polymer electrolytes reinforced with cellulose whiskers. Electrochim Acta 50:3897–3903. doi: 10.1016/j.electacta.2005.02.065

Azizi Samir MAS, Alloin F, Dufresne A (2006) High performance nanocomposite polymer electrolytes. Compos Interface 13:545–559. doi: 10.1163/156855406777408656

Beaulieu LY, Eberman KW, Turner RL et al (2001) Colossal reversible volume changes in lithium alloys. Electrochem Solid-State Lett 4:A137. doi: 10.1149/1.1388178

Benedek R, Thackeray MM (2002) Lithium reactions with intermetallic-compound electrodes. J Power Sources 110:406–411. doi: 10.1016/S0378-7753(02)00204-5

Bongiovanni R, Nair JR, Gerbaldi C, Stephan AM (2011) Membranes for lithium batteries. In: Basile A, Pereira Nunes S. (ed) Advanced membrane science and technology for sustainable energy and environmental applications. Woodhead Publishing Limited, Cambridge, pp 435–464

Bridel JS, Azais T, Morcrette M et al (2011) In situ observation and long-term reactivity of Si/C/CMC composites electrodes for Li-ion batteries. J Electrochem Soc 158:A750–A759. doi: 10.1149/1.3581024

Brissot C, Rosso M, Chazalviel JN, Lascaud S (1999) Dendritic growth mechanisms in lithium/polymer cells. J Power Sources 81–82:925–929. doi: 10.1016/S0378-7753(98)00242-0

Buqa H, Holzapfel M, Krumeich F et al (2006) Study of styrene butadiene rubber and sodium methyl cellulose as binder for negative electrodes in lithium-ion batteries. J Power Sources 161:617–622. doi: 10.1016/j.jpowsour.2006.03.073

Caballero A, Morales J, Sanchez L (2005) Tin nanoparticles formed in the presence of cellulose fibers exhibit excellent electrochemical performance as anode materials in lithium-ion batteries. Electrochem Solid-State Lett 8:A464–A466. doi: 10.1149/1.1993388

Caballero Á, Morales J, Sánchez L (2008) A simple route to high performance nanometric metallic materials for Li-ion batteries involving the use of cellulose: the case of Sb. J Power Sources 175:553–557. doi: 10.1016/j.jpowsour.2007.09.100

Cabana J, Monconduit L, Larcher D, Palacín MR (2010) Beyond intercalation-based Li-ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions. Adv Mater 22:E170–E192. doi: 10.1002/adma.201000717

Callens S, Nest J-F, Gandini A, Armand M (1991) A novel solid polymer electrolyte: synthesis and characterization. Polym Bull 25:443–450. doi: 10.1007/BF00310235

Camer JLG, Morales J, Sanchez L (2008) Nano-Si/cellulose composites as anode materials for lithium-ion batteries. Electrochem Solid-State Lett 11:A101–A104. doi: 10.1149/1.2902305

Camer JLG, Morales J, Sánchez L et al (2009) Nanosized Si/cellulose fiber/carbon composites as high capacity anodes for lithium-ion batteries: a galvanostatic and dilatometric study. Electrochim Acta 54:6713–6717. doi: 10.1016/j.electacta.2009.06.085

Cameron JM, Hughes RW, Zhao Y, Gregory DH (2011) Ternary and higher pnictides; prospects for new materials and applications. Chem Soc Rev 40:4099–4118. doi: 10.1039/C0CS00132E

Capsoni D, Bini M, Ferrari S et al (2012) Recent advances in the development of Li–air batteries. J Power Sources 220:253–263. doi: 10.1016/j.jpowsour.2012.07.123

Chelmecki M, Meyer WH, Wegner G (2007) Effect of crosslinking on polymer electrolytes based on cellulose. J Appl Polym Sci 105:25–29. doi: 10.1002/app.26108

Chiappone A (2011) Ligno-cellulosic materials for energy storage. Politecnico di Torino, Turin

Chiappone A, Nair JR, Gerbaldi C et al (2011) Microfibrillated cellulose as reinforcement for Li-ion battery polymer electrolytes with excellent mechanical stability. J Power Sources 196:10280–10288. doi: 10.1016/j.jpowsour.2011.07.015

Chou SL, Gao XW, Wang JZ et al (2011a) Tin/polypyrrole composite anode using sodium carboxymethyl cellulose binder for lithium-ion batteries. Dalton Trans 40:12801. doi: 10.1039/C1DT10396B

Chou SL, Wang JZ, Liu HK, Dou SX (2011b) Rapid synthesis of Li4Ti5O12 microspheres as anode materials and its binder effect for lithium-ion battery. J Phys Chem C 115:16220–16227. doi: 10.1021/jp2039256

Courtel FM, Niketic S, Duguay D et al (2011) Water-soluble binders for MCMB carbon anodes for lithium-ion batteries. J Power Sources 196:2128–2134. doi: 10.1016/j.jpowsour.2010.10.025

Danko T (1995) Properties of cellulose separators for alkaline secondary batteries. In: Proceedings of the tenth annual battery conference on applications and advances, pp 261–264

Ding N, Xu J, Yao Y et al (2009) Improvement of cyclability of Si as anode for Li-ion batteries. J Power Sources 192:644–651. doi: 10.1016/j.jpowsour.2009.03.017

Drofenik J, Gaberscek M, Dominko R et al (2003) Cellulose as a binding material in graphitic anodes for Li ion batteries: a performance and degradation study. Electrochim Acta 48:883–889. doi: 10.1016/S0013-4686(02)00784-3

Ellis BL, Lee KT, Nazar LF (2010) Positive electrode materials for Li-ion and Li-batteries. Chem Mater 22:691–714. doi: 10.1021/cm902696j

Etacheri V, Marom R, Elazari R et al (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4:3243–3262. doi: 10.1039/C1EE01598B

Fenton DE, Parker JM, Wright PV (1973) Complexes of alkali metal ions with poly(ethylene oxide). Polymer 14:589. doi: 10.1016/0032-3861(73)90146-8

Fergus JW (2010a) Recent developments in cathode materials for lithium ion batteries. J Power Sources 195:939–954. doi: 10.1016/j.jpowsour.2009.08.089

Fergus JW (2010b) Ceramic and polymeric solid electrolytes for lithium-ion batteries. J Power Sources 195:4554–4569. doi: 10.1016/j.jpowsour.2010.01.076

Ferreira I, Brás B, Correia N et al (2010) Self-rechargeable paper thin-film batteries: performance and applications. J Disp Technol 6:332–335. doi: 10.1109/JDT.2010.2056672

Ferreira I, Brás B, Martins JI et al (2011) Solid-state paper batteries for controlling paper transistors. Electrochim Acta 56:1099–1105. doi: 10.1016/j.electacta.2010.10.018

Fongy C, Moreau P, Chazelle S et al (2012) Toward the aqueous processing of Li4Ti5O12: a comparative study with LiFePO4. J Electrochem Soc 159:A1083–A1090. doi: 10.1149/2.075207jes

Girishkumar G, McCloskey B, Luntz AC et al (2010) Lithium − air battery: promise and challenges. J Phys Chem Lett 1:2193–2203. doi: 10.1021/jz1005384

Goodenough JB, Kim Y (2011) Challenges for rechargeable batteries. J Power Sources 196:6688–6694. doi: 10.1016/j.jpowsour.2010.11.074

Gozdz A (2003) Electrochemical cell comprising lamination of electrode and paper separator members. US Patent 20030062257 A1

Gozdz A, Plitz I, Du Pasquier A, Shelburne J (2002) Use of electrode-bonded paper separators in non-aqueous electric double-layer capacitors and Li-ion battereis. In: Proceedings of 201st meeting of the Electrochemical Society, pp 12–17

Hatakeyama T, Nakamura K, Hatakeyama H (2000) Vaporization of bound water associated with cellulose fibres. Thermochimica acta 352–353:233–239

He P, Yu H, Li D, Zhou H (2012) Layered lithium transition metal oxide cathodes towards high energy lithium-ion batteries. J Mater Chem 22:3680. doi: 10.1039/c2jm14305d

Hilder M, Winther-Jensen B, Clark NB (2009) Paper-based, printed zinc–air battery. J Power Sources 194:1135–1141. doi: 10.1016/j.jpowsour.2009.06.054

Hochgatterer NS, Schweiger MR, Koller S et al (2008) Silicon/graphite composite electrodes for high-capacity anodes: influence of binder chemistry on cycling stability. Electrochem Solid-State Lett 11:A76. doi: 10.1149/1.2888173

Howard WF, Spotnitz RM (2007) Theoretical evaluation of high-energy lithium metal phosphate cathode materials in Li-ion batteries. J Power Sources 165:887–891. doi: 10.1016/j.jpowsour.2006.12.046

Hu L, Choi JW, Yang Y et al (2009) Highly conductive paper for energy-storage devices. Proc Natl Acad Sci 106:21490–21494

Hu L, Pasta M, Mantia FL et al (2010a) Stretchable, porous, and conductive energy textiles. Nano Lett 10:708–714. doi: 10.1021/nl903949m

Hu L, Wu H, Cui Y (2010b) Printed energy storage devices by integration of electrodes and separators into single sheets of paper. Appl Phys Lett 96:183502–183502-3. doi: 10.1063/1.3425767

Hu L, Wu H, La Mantia F et al (2010c) Thin, flexible secondary Li-ion paper batteries. ACS Nano 4:5843–5848. doi: 10.1021/nn1018158

Hu L, La Mantia F, Wu H et al (2011) Lithium-ion textile batteries with large areal mass loading. Adv Energy Mater 1:1012–1017. doi: 10.1002/aenm.201100261

Hu L, Liu N, Eskilsson M et al (2013) Silicon-conductive nanopaper for Li-ion batteries. Nano Energy. doi: 10.1016/j.nanoen.2012.08.008

Hubbe MA, Rojas OJ, Lucia LA, Sain M (2008) Cellulosic nanocomposites: a review. Biomaterials 3:929–980

Jabbour L, Gerbaldi C, Chaussy D et al (2010) Microfibrillated cellulose–graphite nanocomposites for highly flexible paper-like Li-ion battery electrodes. J Mater Chem 20:7344–7347. doi: 10.1039/C0JM01219J

Jabbour L, Destro M, Gerbaldi C et al (2012a) Aqueous processing of cellulose based paper-anodes for flexible Li-ion batteries. J Mater Chem 22:3227–3233. doi: 10.1039/C2JM15117K

Jabbour L, Destro M, Gerbaldi C et al (2012b) Use of paper-making techniques for the production of Li-ion paper-batteries. 27:472–475

Jabbour L, Destro M, Chaussy D et al (2013) Flexible cellulose/LiFePO4 paper-cathodes: toward eco-friendly all-paper Li-ion batteries. Cellulose 20:571–582. doi: 10.1007/s10570-012-9834-x

Jeong G, Kim YU, Kim H et al (2011) Prospective materials and applications for Li secondary batteries. Energy Environ Sci 4:1986–2002. doi: 10.1039/C0EE00831A

Jeong SS, Böckenfeld N, Balducci A et al (2012) Natural cellulose as binder for lithium battery electrodes. J Power Sources 199:331–335. doi: 10.1016/j.jpowsour.2011.09.102

Ji L, Lin Z, Alcoutlabi M, Zhang X (2011) Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ Sci 4:2682–2699. doi: 10.1039/C0EE00699H

Jugović D, Uskoković D (2009) A review of recent developments in the synthesis procedures of lithium iron phosphate powders. J Power Sources 190:538–544. doi: 10.1016/j.jpowsour.2009.01.074

Kamaya N, Homma K, Yamakawa Y et al (2011) A lithium superionic conductor. Nat Mater 10:682–686. doi: 10.1038/nmat3066

Kamel S (2007) Nanotechnology and its applications in lignocellulosic composites, a mini review. eXPRESS. Polym Lett 1:546–575. doi: 10.3144/expresspolymlett.2007.78

Kelley J, Simonsen J, Ding J (2013) Poly(vinylidene fluoride-co-hexafluoropropylene) nanocomposites incorporating cellulose nanocrystals with potential applications in lithium ion batteries. J Appl Polym Sci 127:487–493. doi: 10.1002/app.37790

Kennedy JF (1985) Cellulose and its derivatives: chemistry, biochemistry, and applications. E. Horwood, Chichester

Kim GT, Jeong SS, Joost M et al (2011) Use of natural binders and ionic liquid electrolytes for greener and safer lithium-ion batteries. J Power Sources 196:2187–2194. doi: 10.1016/j.jpowsour.2010.09.080

Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393. doi: 10.1002/anie.200460587

Klemm D, Kramer F, Moritz S et al (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466. doi: 10.1002/anie.201001273

Ko YG, Khasbaatar AD, Choi US, Kim J-Y (2010) Molecular interaction mechanism in solid polymer electrolyte comprising cellulose phthalate and LiClO4. Solid State Ion 181:1178–1182. doi: 10.1016/j.ssi.2010.06.036

Kritzer P, Cook JA (2007) Nonwovens as separators for alkaline batteries. J Electrochem Soc 154:A481–A494. doi: 10.1149/1.2711064

Kuribayashi I (1996) Characterization of composite cellulosic separators for rechargeable lithium-ion batteries. J Power Sources 63:87–91. doi: 10.1016/S0378-7753(96)02450-0

Lalia BS, Samad YA, Hashaikeh R (2013) Nanocrystalline cellulose-reinforced composite mats for lithium-ion batteries: electrochemical and thermomechanical performance. J Solid State Electrochem 17:575–581. doi: 10.1007/s10008-012-1894-1

Le Nest JF, Callens S, Gandini A, Armand M (1992) A new polymer network for ionic conduction. Electrochim Acta 37:1585–1588. doi: 10.1016/0013-4686(92)80116-4

Lee KB (2005) Urine-activated paper batteries for biosystems. J Micromech Microeng 15:S210–S214. doi: 10.1088/0960-1317/15/9/S06

Lee JH, Kim JS, Kim YC et al (2008a) Dispersion properties of aqueous-based LiFePO4 pastes and their electrochemical performance for lithium batteries. Ultramicroscopy 108:1256–1259. doi: 10.1016/j.ultramic.2008.04.027

Lee JH, Kim JS, Kim YC et al (2008b) Effect of carboxymethyl cellulose on aqueous processing of LiFePO4 cathodes and their electrochemical performance. Electrochem Solid State Lett 11:A175

Lee S-Y, Chun S-J, Kang I-A, Park J-Y (2009) Preparation of cellulose nanofibrils by high-pressure homogenizer and cellulose-based composite films. J Ind Eng Chem 15:50–55. doi: 10.1016/j.jiec.2008.07.008

Lee JM, Nguyen DQ, Lee SB et al (2010) Cellulose triacetate-based polymer gel electrolytes. J Appl Polym Sci 115:32–36. doi: 10.1002/app.29398

Leijonmarck S, Cornell A, Lindbergh G, Wågberg L (2013) Single-paper flexible Li-ion battery cells through a paper-making process based on nano-fibrillated cellulose. J Mater Chem A. doi: 10.1039/C3TA01532G

LeNest J-F, Gandini A, Xu L, Schoenenberger C (1993) Polymer networks for ionic conduction: a new family based on polysaccharide precursors. Polym Adv Technol 4:92–98. doi: 10.1002/pat.1993.220040206

Lestriez B, Bahri S, Sandu I et al (2007) On the binding mechanism of CMC in Si negative electrodes for Li-ion batteries. Electrochem Commun 9:2801–2806. doi: 10.1016/j.elecom.2007.10.001

Lewandowski A, Świderska-Mocek A (2009) Ionic liquids as electrolytes for Li-ion batteries—an overview of electrochemical studies. J Power Sources 194:601–609. doi: 10.1016/j.jpowsour.2009.06.089

Li J, Lewis RB, Dahn JR (2007) Sodium carboxymethyl cellulose. Electrochem Solid-State Lett 10:A17–A20

Li Z, Zhang D, Yang F (2009) Developments of lithium-ion batteries and challenges of LiFePO4 as one promising cathode material. J Mater Sci 44:2435–2443. doi: 10.1007/s10853-009-3316-z

Li J, Klöpsch R, Nowak M et al (2011) Investigations on cellulose-based high voltage composite cathodes for lithium ion batteries. J Power Sources 196:7687. doi: 10.1016/j.jpowsour.2011.04.030

Linden D, Reddy TB (2002) Handbook of batteries. McGraw-Hill, New York

Luo J-Y, Cui W-J, He P, Xia Y–Y (2010) Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte. Nat Chem 2:760–765. doi: 10.1038/nchem.763

Lux SF, Schappacher F, Balducci A et al (2010) Low cost, environmentally benign binders for lithium-ion batteries. J Electrochem Soc 157:A320–A325. doi: 10.1149/1.3291976

Machado GO, Ferreira HCA, Pawlicka A (2005) Influence of plasticizer contents on the properties of HEC-based solid polymeric electrolytes. Electrochim Acta 50:3827–3831. doi: 10.1016/j.electacta.2005.02.041

Mancini M, Nobili F, Tossici R et al (2011) High performance, environmentally friendly and low cost anodes for lithium-ion battery based on TiO2 anatase and water soluble binder carboxymethyl cellulose. J Power Sources 196:9665–9671. doi: 10.1016/j.jpowsour.2011.07.028

Manthiram A (2011) Materials challenges and opportunities of lithium ion batteries. J Phys Chem Lett 2:176–184. doi: 10.1021/jz1015422

Manuel Stephan A (2006) Review on gel polymer electrolytes for lithium batteries. Eur Polym J 42:21–42. doi: 10.1016/j.eurpolymj.2005.09.017

Marom R, Amalraj SF, Leifer N et al (2011) A review of advanced and practical lithium battery materials. J Mater Chem 21:9938–9954. doi: 10.1039/C0JM04225K

Megahed S, Scrosati B (1994) Lithium-ion rechargeable batteries. J Power Sources 51:79–104. doi: 10.1016/0378-7753(94)01956-8

Nagaura T, Tozawa K (1990) Lithium ion rechargeable battery. Progr Batterieis Solar Cells 9:209–217

Nair JR, Gerbaldi C, Chiappone A et al (2009) UV-cured polymer electrolyte membranes for Li-cells: improved mechanical properties by a novel cellulose reinforcement. Electrochem Commun 11:1796–1798. doi: 10.1016/j.elecom.2009.07.021

Nair JR, Chiappone A, Gerbaldi C et al (2011) Novel cellulose reinforcement for polymer electrolyte membranes with outstanding mechanical properties. Electrochim Acta 57:104–111. doi: 10.1016/j.electacta.2011.03.124

Nyström G, Razaq A, Strømme M et al (2009) Ultrafast all-polymer paper-based batteries. Nano Lett 9:3635–3639. doi: 10.1021/nl901852h

Nyström G, Mihranyan A, Razaq A et al (2010) A nanocellulose polypyrrole composite based on microfibrillated cellulose from wood. J Phys Chem B 114:4178–4182. doi: 10.1021/jp911272m

Ohzuku T, Brodd RJ (2007) An overview of positive-electrode materials for advanced lithium-ion batteries. J Power Sources 174:449–456. doi: 10.1016/j.jpowsour.2007.06.154

Padhi AK (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188. doi: 10.1149/1.1837571

Palacín MR (2009) Recent advances in rechargeable battery materials: a chemist’s perspective. Chem Soc Rev 38:2565–2575. doi: 10.1039/B820555H

Paracha RN, Ray S, Easteal AJ (2012) Grafting of LiAMPS on ethyl cellulose: a route to the fabrication of superior quality polyelectrolyte gels for rechargeable Lithium ion batteries. J Mater Sci 47:3698–3705. doi: 10.1007/s10853-011-6218-9

Park CM, Kim JH, Kim H, Sohn HJ (2010) Li-alloy based anode materials for Li secondary batteries. Chem Soc Rev 39:3115. doi: 10.1039/b919877f

Patil A, Patil V, Wook Shin D et al (2008) Issue and challenges facing rechargeable thin film lithium batteries. Mater Res Bull 43:1913–1942. doi: 10.1016/j.materresbull.2007.08.031

Porcher W, Lestriez B, Jouanneau S, Guyomard D (2009) Design of aqueous processed thick LiFePO4 composite electrodes for high-energy lithium battery. J Electrochem Soc 156:A133–A144. doi: 10.1149/1.3046129

Pushparaj VL, Shaijumon MM, Kumar A et al (2007) Flexible energy storage devices based on nanocomposite paper. Proc Natl Acad Sci 104:13574–13577. doi: 10.1073/pnas.0706508104

Quartarone E, Mustarelli P (2011) Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. Chem Soc Rev 40:2525. doi: 10.1039/c0cs00081g

Ramesh S, Shanti R, Morris E (2012a) Plasticizing effect of 1-allyl-3-methylimidazolium chloride in cellulose acetate based polymer electrolytes. Carbohydr Polym 87:2624–2629. doi: 10.1016/j.carbpol.2011.11.037

Ramesh S, Shanti R, Morris E (2012b) Discussion on the influence of DES content in CA-based polymer electrolytes. J Mater Sci 47:1787–1793. doi: 10.1007/s10853-011-5964-z

Ramesh S, Shanti R, Morris E (2012c) Exerted influence of deep eutectic solvent concentration in the room temperature ionic conductivity and thermal behavior of corn starch based polymer electrolytes. J Mol Liq 166:40–43. doi: 10.1016/j.molliq.2011.11.010

Regiani AM, de Oliveira Machado G, LeNest J-F et al (2001) Cellulose derivatives as solid electrolyte matrixes. Macromol Symp 175:45–54. doi: 10.1002/1521-3900(200110)175:1<45:AID-MASY45>3.0.CO;2-M

Ren Z, Liu Y, Sun K et al (2009) A microporous gel electrolyte based on poly(vinylidene fluoride-co-hexafluoropropylene)/fully cyanoethylated cellulose derivative blend for lithium-ion battery. Electrochim Acta 54:1888–1892. doi: 10.1016/j.electacta.2008.10.011

Roberts M, Johns P, Owen J et al (2011) 3D lithium ion batteries—from fundamentals to fabrication. J Mater Chem 21:9876–9890. doi: 10.1039/C0JM04396F

Rosso M, Brissot C, Teyssot A et al (2006) Dendrite short-circuit and fuse effect on Li/polymer/Li cells. Electrochim Acta 51:5334–5340. doi: 10.1016/j.electacta.2006.02.004

Sato T, Banno K, Maruo T, Nozu R (2005) New design for a safe lithium-ion gel polymer battery. J Power Sources 152:264–271. doi: 10.1016/j.jpowsour.2005.03.212

Schaefer J, Lu Y, Moganty S et al (2012) Electrolytes for high-energy lithium batteries. Appl Nanosci 2:91–109. doi: 10.1007/s13204-011-0044-x

Schalkwijk W, Scrosati B (2002) Advances in lithium-ion batteries. Springer, Berlin

Scheirs J, Camino G, Tumiatti W (2001) Overview of water evolution during the thermal degradation of cellulose. Eur Polym J 37:933–942. doi: 10.1016/S0014-3057(00)00211-1

Schmidt M, Heider U, Kuehner A et al (2001) Lithium fluoroalkylphosphates: a new class of conducting salts for electrolytes for high energy lithium-ion batteries. J Power Sources 97–98:557–560. doi: 10.1016/S0378-7753(01)00640-1

Schoenenberger C, Le Nest JF, Gandini A (1995) Polymer electrolytes based on modified polysaccharides. 2. Polyether-modified cellulosics. Electrochim Acta 40:2281–2284. doi: 10.1016/0013-4686(95)00178-H

Schroers M, Kokil A, Weder C (2004) Solid polymer electrolytes based on nanocomposites of ethylene oxide–epichlorohydrin copolymers and cellulose whiskers. J Appl Polym Sci 93:2883–2888. doi: 10.1002/app.20870

Scrosati B (2011) History of lithium batteries. J Solid State Electrochem 15:1623–1630

Scrosati B, Garche J (2010) Lithium batteries: status, prospects and future. J Power Sources 195:2419–2430. doi: 10.1016/j.jpowsour.2009.11.048

Scrosati B, Hassoun J, Sun Y-K (2011) Lithium-ion batteries. A look into the future. Energy Environ Sci 4:3287. doi: 10.1039/c1ee01388b

Shukla AK, Prem Kumar T (2008) Materials for next-generation lithium batteries. Curr Sci 94:314–331

Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494. doi: 10.1007/s10570-010-9405-y

Sivasankaran V, Marino C, Chamas M et al (2011) Improvement of intermetallics electrochemical behavior by playing with the composite electrode formulation. J Mater Chem 21:5076–5082. doi: 10.1039/C0JM03831H

Sun Y-K, Chen Z, Noh H-J et al (2012) Nanostructured high-energy cathode materials for advanced lithium batteries. Nat Mater 11:942–947. doi: 10.1038/nmat3435

Tao H, Feng Z, Liu H et al (2011) Reality and future of rechargeable lithium batteries. Open Mater Sci J 5:204–214

Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367. doi: 10.1038/35104644

Tarascon JM, Gozdz AS (1996) Performance of Bellcore’s plastic rechargeable Li-ion batteries. Solid State Ion 86–88:49–54. doi: 10.1016/0167-2738(96)00330-X

Vazquez S, Lukic S, Galvan E et al (2011) Recent advances on energy storage systems. In: :Proceedings of 37th annual conference on IEEE Industrial Electronics Society, pp 4636 –4640

Velazquez-Morales P, Le Nest J-F, Gandini A (1998) Polymer electrolytes derived from chitosan/polyether networks. Electrochim Acta 43:1275–1279

Venugopal G (2001) Characterization of thermal cut-off mechanisms in prismatic lithium-ion batteries. J Power Sources 101:231–237

Venugopal G, Moore J, Howard J, Pendalwar S (1999) Characterization of microporous separators for lithium-ion batteries. J Power Sources 77:34–41

Wang CG, Yuan WN, Lu NQ (2010) Studies on preparation and properties of novel gel polymer electrolyte. In: Proceedings of 3rd international conference on multi-functional materials and structures

Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104:4271–4302

Wu YP, Rahm E, Holze R (2003) Carbon anode materials for lithium ion batteries. J Power Sources 114:228–236. doi: 10.1016/S0378-7753(02)00596-7

Xie L, Zhao L, Wan J et al (2012) The electrochemical performance of carboxymethyl cellulose lithium as a binding material for anthraquinone cathodes in lithium batteries. J Electrochem Soc 159:A499–A505

Xu K (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. ChemInform 35

Yano S, Sawaguchi T, Hagiwara T et al. (2008) Lithium ion conductive material utilizing bacterial cellulose organogel, lithium ion battery utilizing the same and bacterial cellulose areogel. US Patent 20080220333 A1

Yoshino A (2012) The birth of the lithium-ion battery. Angew Chem Int Ed 51:2–5

Yoshino A, Sanechika K, Nakajima T (1995) Secondary battery. US Patent RE34,991

Yoshio M, Brodd RJ, Kozawa A (2009) Lithium-ion batteries: science and technologies. Springer, Berlin

Yuan X, Liu H, Zhang J (2011) Lithium-ion batteries: advanced materials and technologies. CRC Press, Boca Raton, FL

Yue Z, Cowie JM (2002) Synthesis and characterization of ion conducting cellulose esters with PEO side chains. Polymer 43:4453–4460. doi: 10.1016/S0032-3861(02)00284-7

Yue Z, McEwen IJ, Cowie JMG (2002) Ion conducting behaviour and morphology of solid polymer electrolytes based on a regioselectively substituted cellulose ether with PEO side chains. J Mater Chem 12:2281–2285. doi: 10.1039/b201804g

Yue Z, McEwen I, Cowie JM (2003) Novel gel polymer electrolytes based on a cellulose ester with PEO side chains. Solid State Ion 156:155–162. doi: 10.1016/S0167-2738(02)00595-7

Zaïdi W, Oumellal Y, Bonnet JP et al (2011) Carboxymethylcellulose and carboxymethylcellulose-formate as binders in MgH2–carbon composites negative electrode for lithium-ion batteries. J Power Sources 196:2854–2857. doi: 10.1016/j.jpowsour.2010.11.048

Zhang WJ (2011a) A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J Power Sources 196:13–24

Zhang WJ (2011b) Structure and performance of LiFePO4 cathode materials: a review. J Power Sources 196:2962–2970

Zhang LC, Sun X, Hu Z et al (2012) Rice paper as a separator membrane in lithium-ion batteries. J Power Sources 204:149–154

Zhang J, Liu Z, Kong Q et al (2013) Renewable and superior thermal-resistant cellulose-based composite nonwoven as lithium-ion battery separator. ACS Appl Mater Interfaces 5:128–134. doi: 10.1021/am302290n