Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Thủy phân Ulva fasciata, Hydropuntia dentata và Sargassum vulgare bằng cellulase và axit cho sản xuất bioethanol
Tóm tắt
Quá trình thủy phân trong sản xuất bioethanol là một trong những giai đoạn hạn chế nhất trong toàn bộ quy trình sản xuất, vì đây là giai đoạn thu được các loại đường sẽ được chuyển hóa thành ethanol. Nghiên cứu này đã khảo sát ba loại tảo Ulva fasciata, Hydropuntia dentata và Sargassum vulgare để xác định phương pháp tiền xử lý hiệu quả nhất, điều kiện thủy phân tối ưu và các mô hình dự đoán với axit sulfuric loãng và enzyme cellulase làm chất xúc tác. Phương pháp tiền xử lý bằng axit loãng được xác định là hiệu quả nhất trong việc tối đa hóa hiệu suất xúc tác của enzyme trên cả ba loại tảo đã chọn. Tuy nhiên, Ulva fasciata được phát hiện là có khả năng thủy phân hiệu quả mà không cần bất kỳ hình thức tiền xử lý nào. Nghiên cứu cũng chỉ ra rằng thủy phân bằng axit sulfuric loãng kém hiệu quả hơn do chỉ giải phóng tối đa 52,4% đường khử trong tảo so với 90,9% từ quá trình thủy phân bằng enzyme cellulase. Thêm vào đó, mô hình hồi quy hiệu quả nhất giữa các loài tảo được nghiên cứu đã được xác định cho quá trình thủy phân enzym của U. fasciata với hệ số tương quan đạt 99,4%, cho thấy độ chính xác cao trong việc dự đoán sản lượng đường khử từ các loài trong các điều kiện nhất định. Tóm lại, quá trình thủy phân enzym tối ưu bị ảnh hưởng nhiều nhất bởi nồng độ chất nền đối với cả ba loài tảo được khảo sát.
Từ khóa
#bioethanol #thủy phân #enzyme cellulase #axit sulfuric #Ulva fasciata #Hydropuntia dentata #Sargassum vulgareTài liệu tham khảo
REN21 (2018) Advancing the global renewable energy transition. Renewables 2018 global status report 2018 in perspective. http://www.ren21.net/wp-content/uploads/2018/06/GSR_2018_Highlights_final.pdf. Accessed 9 Nov 2018
Adams JM, Gallagher JA, Donnison IS (2009) Fermentation study on Saccharina latissima for bioethanol production considering variable pre-treatments. J Appl Phycol 21(5):569
Borines MG, de Leon RL, Cuello JL (2013) Bioethanol production from the macroalgae Sargassum spp. Bioresour Technol 138:22–29
Chakraborty S, Das Mondal R, Mukherjee D, Bhattacharjee C (2013) Production of bio-based fuels: bioethanol and biodiesel. In: Piemonte V (ed) Sustainable development in chemical engineering innovative technologies, 1st edn. Wiley, Chichester, pp 153–180
Ghana trade portal (2016) http://www.ghanatrade.gov.gh/Food-Beverage/calteh-ventures-limited.html. Accessed 9 Nov 2018
Kraan S (2013) Mass-cultivation of carbohydrate rich macroalgae, a possible solution for sustainable biofuel production. Mitig Adapt Strateg Glob Change 18(1):27–46
Schultz-Jensen N, Thygesen A, Leipold F, Thomsen ST, Roslander C, Lilholt H, Bjerre AB (2013) Pretreatment of the macroalgae Chaetomorpha linum for the production of bioethanol—comparison of five pretreatment technologies. Bioresour Technol 140:36–42
Meinita MDN, Marhaeni B, Winanto T, Setyaningsih D, Hong Y (2015) Catalytic efficiency of sulfuric and hydrochloric acids for the hydrolysis of Gelidium latifolium (Gelidiales, Rhodophyta) in bioethanol production. J Ind Eng Chem 27:108–114
Jones CS, Mayfield SP (2012) Algae biofuels: versatility for the future of bioenergy. Curr Opin Biotechnol 23(3):346–351
Lee KT, Ofori-Boateng C (2013) Biofuels: production technologies, global profile, and market potentials. In: Singh A (ed) Sustainability of biofuel production from oil palm biomass. Springer, Singapore, pp 31–74
Mutripah S, Meinita MDN, Kang JY, Jeong GT, Susanto AB, Prabowo RE, Hong YK (2014) Bioethanol production from the hydrolysate of Palmaria palmata using sulfuric acid and fermentation with brewer’s yeast. J Appl Phycol 26(1):687–693
ye Lee J, Li P, Lee J, Ryu HJ, Oh KK (2013) Ethanol production from Saccharina japonica using an optimized extremely low acid pretreatment followed by simultaneous saccharification and fermentation. Bioresour Technol 127:119–125
Meinita MDN, Marhaeni B, Winanto T, Jeong GT, Khan MNA, Hong YK (2013) Comparison of agarophytes (Gelidium, Gracilaria, and Gracilariopsis) as potential resources for bioethanol production. J Appl Phycol 25(6):1957–1961
Lee SB, Kim SK, Hong YK, Jeong GT (2016) Optimization of the production of platform chemicals and sugars from the red macroalga, Kappaphycus alvarezii. Algal Res 13:303–310
Kim HM, Wi SG, Jung S, Song Y, Bae HJ (2015) Efficient approach for bioethanol production from red seaweed Gelidium amansii. Bioresour Technol 175:128–134
McHugh DJ (2003) A guide to the seaweed industry FAO fisheries technical paper 441. Food and Agriculture Organization of the United Nations, Rome
Sluiter A, Hames B, Hyman D, Payne C, Ruiz R, Scarlata C et al (2008) Determination of total solids in biomass and total dissolved solids in liquid process samples. National Renewable Energy Laboratory, Golden, CO, NREL Technical Report No. NREL/TP-510-42621, 1-6
Hames B, Scarlata C, Sluiter A (2008) Determination of protein content in biomass. National Renewable Energy Laboratory, 1–5
Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D (2004) Determination of ash in biomass: LAP-005 NREL analytical procedure. National Renewable Energy Laboratory, Golden
Van Wychen S, Laurens L (2013) Determination of total carbohydrates in algal biomass. National Renewable Energy Laboratory, Golden, pp 275–3000
Du F, Wolger E, Wallace L, Liu A, Kaper T, Kelemen B (2010) Determination of product inhibition of CBH1, CBH2, and EG1 using a novel cellulase activity assay. Appl Biochem Biotechnol 161(8):313–317
Trivedi N, Gupta V, Reddy CRK, Jha B (2013) Enzymatic hydrolysis and production of bioethanol from common macrophytic green alga Ulva fasciata Delile. Bioresour Technol 150:106–112
Gao F, Gao L, Zhang D, Ye N, Chen S, Li D (2015) Enhanced hydrolysis of Macrocystis pyrifera by integrated hydroxyl radicals and hot water pretreatment. Bioresour Technol 179:490–496
Adney B, Baker J (1996) Measurement of cellulase activities. Lab Anal Proced 6:1996
Marquez GPB, Santiañez WJE, Trono GC Jr, Montaño MNE, Araki H, Takeuchi H, Hasegawa T (2014) Seaweed biomass of the Philippines: sustainable feedstock for biogas production. Renew Sust Energy Rev 38:1056–1068
Rhein-Knudsen N, Ale MT, Ajalloueian F, Yu L, Meyer AS (2017) Rheological properties of agar and carrageenan from Ghanaian red seaweeds. Food Hydrocoll 63:50–58
Marinho-Soriano E, Fonseca PC, Carneiro MAA, Moreira WSC (2006) Seasonal variation in the chemical composition of two tropical seaweeds. Bioresour Technol 97(18):2402–2406
Kostas ET, White DA, Du C, Cook DJ (2016) Selection of yeast strains for bioethanol production from UK seaweeds. J Appl Phycol 28(2):1427–1441
van Maris AJ, Abbott DA, Bellissimi E, van den Brink J, Kuyper M, Luttik MA et al (2006) Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status. Antonie Van Leeuwenhoek 90(4):391–418
Gensch T, James MJ, Dalton T, Glorius F (2018) Increasing catalyst efficiency in C–H activation catalysis. Angew Chem Int Ed 57(9):2296–2306
Kim NJ, Li H, Jung K, Chang HN, Lee PC (2011) Ethanol production from marine algal hydrolysates using Escherichia coli KO11. Bioresour Technol 102(16):7466–7469
Rhein-Knudsen N, Ale MT, Ajalloueian F, Meyer AS (2017) Characterization of alginates from Ghanaian brown seaweeds: Sargassum spp. and Padina spp. Food Hydrocoll 71:236–244
Meinita MDN, Hong YK, Jeong GT (2012) Comparison of sulfuric and hydrochloric acids as catalysts in hydrolysis of Kappaphycus alvarezii (cottonii). Bioprocess Biosyst Eng 35(1–2):123–128
Pilavtepe M, Celiktas MS, Sargin S, Yesil-Celiktas O (2013) Transformation of Posidonia oceanica residues to bioethanol. Ind Crops Prod 51:348–354
Leitner V, Lindorfer J (2016) Evaluation of technology structure based on energy yield from wheat straw for combined bioethanol and biomethane facility. Renew Energy 87:193–202
Ho SH, Huang SW, Chen CY, Hasunuma T, Kondo A, Chang JS (2013) Bioethanol production using carbohydrate-rich microalgae biomass as feedstock. Bioresour Technol 135:191–198