Cellular non-linear network model of microbial fuel cell

Biosystems - Tập 156-157 - Trang 53-62 - 2017
Michail‐Antisthenis Tsompanas1, Andrew Adamatzky1, Ioannis Ieropoulos2, Neil Phillips1, Georgios Ch. Sirakoulis3, John Greenman2
1Unconventional Computing Centre, University of the West of England, Bristol BS16 1QY, UK
2Bristol BioEnergy Centre, University of the West of England, Bristol BS16 1QY, UK
3Department of Electrical and Computer Engineering, Democritus University of Thrace, Xanthi 67100, Greece

Tóm tắt

Từ khóa


Tài liệu tham khảo

Adamatzky, 2005

Adamatzky, 2006, Glider-based computing in reaction-diffusion hexagonal cellular automata, Chaos Solitons Fractals, 27, 287, 10.1016/j.chaos.2005.03.048

Adamatzky, 2006, Phenomenology of reaction-diffusion binary-state cellular automata, Int. J. Bifurc. Chaos, 16, 2985, 10.1142/S0218127406016598

Adamatzky, 2008, Evolving localizations in reaction-diffusion cellular automata, Int. J. Mod. Phys. C, 19, 557, 10.1142/S0129183108012376

Adamatzky, 2012, vol. 1

Akishina, 2005, Cellular automata approach to investigation of high burn-up structures in nuclear reactor fuel, Part. Nucl. Lett., 2, 124

Balluffi, 2005

Bandman, 1999, Comparative study of cellular-automata diffusion models, 395

Bandman, 2011, Using cellular automata for porous media simulation, J. Supercomput., 57, 121, 10.1007/s11227-010-0391-5

Batstone, 2002

Benzhai, 2014, Simulation of wastewater treatment by aerobic granules in a sequencing batch reactor based on cellular automata, Bioprocess Biosyst. Eng., 37, 2049, 10.1007/s00449-014-1181-x

Berryman, 1989, Simulation of diffusion controlled reaction kinetics using cellular automata, Phys. Lett. A, 136, 348, 10.1016/0375-9601(89)90413-1

Boroushaki, 2005, Simulation of nuclear reactor core kinetics using multilayer 3-D cellular neural networks, IEEE Trans. Nucl. Sci., 52, 719, 10.1109/TNS.2005.852617

Chopard, 1991, Cellular automata model for the diffusion equation, J. Stat. Phys., 64, 859, 10.1007/BF01048321

Chopard, 1994, Reaction-diffusion cellular automata model for the formation of Leisegang patterns, Phys. Rev. Lett., 72, 1384, 10.1103/PhysRevLett.72.1384

Chopard, 1995, Cellular automata modeling of hydrodynamics and reaction-diffusion processes: basic theory, 133

Chua, 1993, The CNN paradigm, IEEE Trans. Circuits Syst. I: Fundam. Theory Appl., 40, 147, 10.1109/81.222795

Chua, 1998, vol. 31

Dab, 1989, Cellular automata approach to reaction-diffusion systems, 257

Dourvas, 2015, Hardware acceleration of cellular automata physarum polycephalum model, Parallel Process. Lett., 25, 1540006, 10.1142/S012962641540006X

Droz, 1997, Cellular automata approach to pattern formation in reaction-diffusion systems, Physica A, 240, 239, 10.1016/S0378-4371(97)00147-7

Fadaei, 2009, A new optimization method based on cellular automata for VVER-1000 nuclear reactor loading pattern, Ann. Nucl. Energy, 36, 659, 10.1016/j.anucene.2008.12.029

Hadad, 2007, Application of cellular neural network (CNN) method to the nuclear reactor dynamics equations, Ann. Nucl. Energy, 34, 406, 10.1016/j.anucene.2007.02.001

Hadad, 2008, Cellular neural networks (CNN) simulation for the TN approximation of the time dependent neutron transport equation in slab geometry, Ann. Nucl. Energy, 35, 2313, 10.1016/j.anucene.2008.08.006

Hiratsuka, 2001, A model of reaction-diffusion cellular automata for massively parallel molecular computing, 247

Ieropoulos, 2013, Miniature microbial fuel cells and stacks for urine utilisation, Int. J. Hydrogen Energy, 38, 492, 10.1016/j.ijhydene.2012.09.062

Krawczyk, 2003, Nonlinear development of bacterial colony modeled with cellular automata and agent objects, Int. J. Mod. Phys. C, 14, 1385, 10.1142/S0129183103006199

Marchese, 2002, A directional diffusion algorithm on cellular automata for robot path-planning, Future Gener. Comput. Syst., 18, 983, 10.1016/S0167-739X(02)00077-8

Margenstern, 2013, Bacteria, turing machines and hyperbolic cellular automata, 209

Matsubara, 2004, Reaction-diffusion chip implementing excitable lattices with multiple-valued cellular automata, IEICE Electron. Express, 1, 248, 10.1587/elex.1.248

Newman, 2004

Odagiri, 2009, Threshold effect with stochastic fluctuation in bacteria-colony-like proliferation dynamics as analyzed through a comparative study of reaction-diffusion equations and cellular automata, Phys. Rev. E, 79, 026202, 10.1103/PhysRevE.79.026202

Oliveira, 2013, A 1D mathematical model for a microbial fuel cell, Energy, 61, 463, 10.1016/j.energy.2013.08.055

Ortiz-Martínez, 2015, Developments in microbial fuel cell modeling, Chem. Eng. J., 271, 50, 10.1016/j.cej.2015.02.076

Ou, 2016, Multi-variable mathematical models for the air–cathode microbial fuel cell system, J. Power Sources, 314, 49, 10.1016/j.jpowsour.2016.02.064

Picioreanu, 2007, A computational model for biofilm-based microbial fuel cells, Water Res., 41, 2921, 10.1016/j.watres.2007.04.009

Picioreanu, 2008, Mathematical model for microbial fuel cells with anodic biofilms and anaerobic digestion, Water Sci. Technol., 57, 965, 10.2166/wst.2008.095

Picioreanu, 2009, Modelling microbial fuel cells with suspended cells and added electron transfer mediator, J. Appl. Electrochem., 40, 151, 10.1007/s10800-009-9991-2

Picioreanu, 2010, Model based evaluation of the effect of pH and electrode geometry on microbial fuel cell performance, Bioelectrochemistry, 78, 8, 10.1016/j.bioelechem.2009.04.009

Picioreanu, 1996

Pinto, 2010, A two-population bio-electrochemical model of a microbial fuel cell, Bioresour. Technol., 101, 5256, 10.1016/j.biortech.2010.01.122

Pirouzmand, 2016, Simulation of nuclear reactor dynamics equations using reconfigurable computing, Prog. Nucl. Energy, 89, 197, 10.1016/j.pnucene.2016.02.018

Potter, 1911, Electrical effects accompanying the decomposition of organic compounds, Proc. R. Soc. Lond. Ser. B, 84, 260, 10.1098/rspb.1911.0073

Santoro, 2015, Cathode materials for ceramic based microbial fuel cells (MFCs), Int. J. Hydrogen Energy, 40, 14706, 10.1016/j.ijhydene.2015.07.054

Sirinutsomboon, 2014, Modeling of a membraneless single-chamber microbial fuel cell with molasses as an energy source, Int. J. Energy Environ. Eng., 5, 1

Suzuki, 2005, Striped and spotted pattern generation on reaction-diffusion cellular automata-theory and LSI implementation, 41

Taghavi, 2016, Self sufficient wireless transmitter powered by foot-pumped urine operating wearable MFC, Bioinspir. Biomim., 11, 016001, 10.1088/1748-3190/11/1/016001

Tsompanas, 2016, Physarum in silicon: the Greek motorways study, Nat. Comput., 15, 279, 10.1007/s11047-014-9459-0

Vitvitsky, 2016, Cellular automata simulation of bacterial cell growth and division, 121

Weimar, 2002, Three-dimensional cellular automata for reaction-diffusion systems, Fundam. Inf., 52, 277

Zeng, 2010, Modelling and simulation of two-chamber microbial fuel cell, J. Power Sources, 195, 79, 10.1016/j.jpowsour.2009.06.101

Zhang, 1995, Modelling of a microbial fuel cell process, Biotechnol. Lett., 17, 809, 10.1007/BF00129009

Zhang, 2006, A cellular automata model for the sequencing batch reactor of activated sludge processes, 1558