Cellular mechanisms for heavy metal detoxification and tolerance
Tóm tắt
Từ khóa
Tài liệu tham khảo
Arazi T, Sunkar R, Kaplan B, Fromm H. 1999. A tobacco plasma membrane calmodulin‐binding transporter confers Ni2+ tolerance and Pb2+ hypersensitivity in transgenic plants. The Plant Journal20,171–182.
Blaudez D, Botton B, Chalot M. 2000. Cadmium uptake and subcellular compartmentation in the ectomycorrhizal fungus Paxillus involutus. Microbiology‐UK146,1109–1117.
Blechert S, Brodschelm W, Hölder S, Kammerer L, Kutchan TM, Mueller MJ, Xia Z‐Q, Zenk MH. 1995. The octadecanoic pathway: signal molecules for the regulation of secondary pathways. Proceedings of the National Academy of Sciences, USA92,4099–4105.
Bringezu K, Lichtenberger O, Leopold I, Neumann D. 1999. Heavy metal tolerance of Silene vulgaris. Journal of Plant Physiology154,536–546.
Brune A, Urbach W, Dietz K‐J. 1994. Compartmentation and transport of zinc in barley primary leaves as basic mechanisms involved in zinc tolerance. Plant, Cell and Environment17,153–162.
Brune A, Urbach W, Dietz K‐J. 1995. Differential toxicity of heavy metals is partly related to a loss of preferential extraplasmic compartmentation: a comparison of Cd‐, Mo‐, Ni‐ and Zn‐stress. New Phytologist129,403–409.
Cakmak I. 2000. Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytologist146,185–205.
Charbonnel‐Campaa L, Lauga B, Combes D. 2000. Isolation of a type 2 metallothionein‐like gene preferentially expressed in the tapetum in Zea mays. Gene254,199–208.
Chardonnens AN, Koevoets PLM, van Zanten A, Schat H, Verkleij JAC. 1999. Properties of enhanced tonoplast zinc transport in natural selected zinc‐tolerant Silene vulgaris. Plant Physiology120,779–785.
Clemens S, Kim EJ, Neumann D, Schroeder JI. 1999. Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast. EMBO Journal18,3325–3333.
Colpaert J, van Assche J. 1992. Zinc toxicity in ectomycorrhizal Pinus sylvestris. Plant and Soil143,201–211.
Cobbett CS. 2000. Phytochelatin biosynthesis and function in heavy‐metal detoxification. Current Opinion in Plant Biology3,211–216.
Davies KL, Davies MS, Francis D. 1991 a. The influence of an inhibitor of phytochelatin synthesis on root growth and root meristematic activity in Festuca rubra L. in response to zinc. New Phytologist118,565–570.
Davies KL, Davies MS, Francis D. 1991 b. Zinc‐induced vacuolation in root meristematic cells of Festuca rubra L. Plant, Cell and Environment14,399–406.
De Knecht JA, Koevoets PLM, Verkleij JAC, Ernst WHO. 1992. Evidence against a role for phytochelatins in naturally selected increased cadmium tolerance in Silene vulgaris (Moench) Garcke. New Phytologist122,681–688.
De Knecht JA, van Dillen M, Koevoets PLM, Schat H, Verkleij JAC, Ernst WHO. 1994. Phytochelatins in cadmium‐sensitive and cadmium‐tolerant Silene vulgaris. Chain length distribution and sulfide incorporation. Plant Physiology104,255–261.
Demidchik V, Sokolik A, Yurin V. 1997. The effect of Cu2+ on ion transport systems of the plant cell plasmalemma. Plant Physiology114,1313–1325.
Dietz K‐J, Baier M, Krämer U. 1999. Free radicals and reactive oxygen species as mediators of heavy metal toxicity in plants. In: Prasad MNV, Hagemeyer J, eds. Heavy metal stress in plants: from molecules to ecosystems. Berlin: Springer‐Verlag, 73–97.
de Miranda JR, Thomas MA, Thurman DA, Tomsett AB. 1989. Metalliothionein genes from the flowering plant Mimulus guttatus. FEBS Letters260,277–280.
De Vos CHR, Schat H, De Waal MAM, Vooijs R, Ernst WHO. 1991. Increased resistance to copper‐induced damage of the root cell plasmalemma in copper tolerant Silene cucubalus. Physiologia Plantarum82,523–528.
Ernst WHO, Verkleij JAC, Schat H. 1992. Metal tolerance in plants. Acta Botanica Neerlandica41,229–248.
Fodor E, Szabó‐Nagy A, Erdei L. 1995. The effects of cadmium on the fluidity and H+‐ATPase activity of plasma membrane from sunflower and wheat roots. Journal of Plant Physiology147,87–92.
Garcia‐Hernandez M, Murphy A, Taiz L. 1998. Metallothioneins 1 and 2 have distinct but overlapping expression patterns in Arabidopsis. Plant Physiology118,387–397.
Giritch A, Ganal M, Stephan UW, Baumlein H. 1998. Structure, expression and chromosomal localization of the metallothionein‐like gene family of tomato. Plant Molecular Biology37,701–714.
Goldsbrough P. 2000. Metal tolerance in plants: the role of phytochelatins and metallothioneins. In: Terry N, Banuelos G, eds. Phytoremediation of contaminated soil and water. CRC Press LLC, 221–233.
Gries GE, Wagner GJ. 1998. Association of nickel versus transport of cadmium and calcium in tonoplast vesicles of oat roots. Planta204,390–396.
Grill E, Loffler S, Winnacker E‐L, Zenk MH. 1989. Phytochelatins, the heavy‐metal‐binding peptides of plants are synthesized from glutathione by a specific γ‐glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proceedings of the National Academy of Sciences, USA86,6838–6842.
Ha SB, Smith AP, Howden R, Dietrich WM, Bugg S, O'Connell MJ, Goldsbrough PB, Cobbett CS. 1999. Phytochelatin synthase genes from Arabidopsis and the yeast Schizosaccharomyces pombe. The Plant Cell11,1153–1163.
Haag‐Kerwer A, Schäfer HJ, Heiss S, Walter C, Rausch T. 1999. Cadmium exposure in Brassica juncea causes a decline in transpiration rate and leaf expansion without effect on photosynthesis. Journal of Experimental Botany50,1827–1835.
Hartley J, Cairney JWG, Meharg AA. 1997. Do ectomycorrhizal fungi exhibit adaptive tolerance to potentially toxic metals in the environment? Plant and Soil189,303–319.
Hartley‐Whitaker J, Ainsworth G, Vooijs R, Ten Bookum W, Schat H, Meharg AA. 2001 a. Phytochelatins are involved in differential arsenate tolerance in Holcus lanatus. Plant Physiology126,299–306.
Hartley‐Whitaker J, Ainsworth G, Meharg AA. 2001 b. Copper‐ and arsenate‐induced oxidative stress in Holcus lanatus L. clones with differential sensitivity. Plant, Cell and Environment24,713–722.
Hernández LE, Cooke DT. 1997. Modification of the root plasma membrane lipid composition of cadmium‐treated Pisum sativum. Journal of Experimental Botany48,1375–1381.
Hildebrandt U, Kaldorf M, Bothe H. 1999. The zinc violet and its colonization by arbuscular mycorrhizal fungi. Journal of Plant Physiology154,709–711.
Himelblau E, Amasino RM. 2000. Delivering copper within plant cells. Current Opinion in Plant Biology3,205–210.
Hirschi KD, Zhen RG, Cunningham KW, Rea PA, Fink GR. 1996. CAXI, an H+/Ca2+ antiporter from Arabidopsis. Proceedings of the National Academy of Sciences, USA93,8782–8786.
Howden R, Goldsbrough PB, Andersen CR, Cobbett CS. 1995 a. Cadmium‐sensitive, cad1 mutants of Arabidopsis thaliana are phytochelatin deficient. Plant Physiology107,1059–1066.
Howden R, Andersen CR, Goldsbrough PB, Cobbett CS. 1995 b. A cadmium‐sensitive, glutathione‐deficient mutant of Arabidopsis thaliana. Plant Physiology107,1067–1073.
Hüttermann A, Arduini I, Godbold DL. 1999. Metal pollution and forest decline. In: Prasad NMV, Hagemeyer J, eds. Heavy metal stress in plants: from molecules to ecosystems. Berlin: Springer‐Verlag, 253–272.
Inouhe M, Ito R, Ito S, Sasada N, Tohoyama H, Joho M. 2000. Azuki bean cells are hypersensitive to cadmium and do not synthesize phytochelatins. Plant Physiology123,1029–1036.
Jentschke G, Godbold DL. 2000. Metal toxicity and ectomycorrhizas. Physiologia Plantarum109,107–116.
Kaldorf M, Kuhn AJ, Schröder WH, Hildebrandt U, Bothe H. 1999. Selective element deposits in maize colonized by a heavy metal tolerance conferring arbuscular mycorrhizal fungus. Journal of Plant Physiology154,718–728.
Krämer U, Cotter‐Howells JD, Charnock JM, Baker AJM, Smith JAC. 1996. Free histidine as a metal chelator in plants that accumulate nickel. Nature379,635–638.
Lewis S, Donkin ME, Depledge MH. 2001. Hsp70 expression in Enteromorpha intestinalis (Chlorophyta) exposed to environmental stressors. Aquatic Toxicology51,277–291.
Lewis S, Handy RD, Cordi B, Billinghurst Z, Depledge MH. 1999. Stress proteins (HSPs): methods of detection and their use as an environmental biomarker. Ecotoxicology8,351–368.
Ma JF, Ryan PR, Delhaize E. 2001. Aluminium tolerance in plants and the complexing role of organic acids. Trends in Plant Science6,273–278.
Macnair MR, Tilstone GH, Smith SE. 2000. The genetics of metal tolerance and accumulation in higher plants. In: Terry N, Banuelos G, eds. Phytoremediation of contaminated soil and water. CRC Press LLC, 235–250.
Marschner H. 1995. Mineral nutrition of higher plants, 2nd edn. London: Academic Press.
Meharg AA. 1993. The role of the plasmalemma in metal tolerance in angiosperms. Physiologia Plantarum88,191–198.
Meharg AA. 1994. Integrated tolerance mechanisms: constitutive and adaptive plant responses to elevated metal concentrations in the environment. Plant, Cell and Environment17,989–993.
Meharg AA, Macnair MR. 1990. An altered phosphate uptake system in arsenate‐tolerant Holcus lanatus. New Phytologist116,29–35.
Meharg AA, Macnair MR. 1992. Genetic correlation between arsenate tolerance and the rate of influx of arsenate and phosphate in Holcus lanatus. Heredity69,336–341.
Murphy A, Taiz L. 1995 a. A new vertical mesh transfer technique for metal‐tolerance studies in Arabidopsis. Plant Physiology108,29–38.
Murphy A, Taiz L. 1995 b. Comparison of metallothionein gene expression and nonprotein thiols in ten Arabidopsis ecotypes. Plant Physiology109,945–954.
Neumann D, Lichtenberger O, Günther D, Tschiersch K, Nover L. 1994. Heat‐shock proteins induce heavy‐metal tolerance in higher plants. Planta194,360–367.
Neumann D, Nieden UZ, Lichtenberger O, Leopold I. 1995. How does Armeria maritima tolerate high heavy metal concentrations? Journal of Plant Physiology146,704–717.
Ortiz DF, Kreppel L, Speiser DM, Scheel G, McDonald G, Ow DW. 1992. Heavy metal tolerance in the fission yeast requires an ATP‐binding cassette‐type vacuolar membrane transporter. EMBO Journal11,3491–3499.
Palmiter RD, Findley SD. 1995. Cloning and functional characterization of a mammalian zinc transporter that confers resistance to zinc. EMBO Journal14,639–649.
Pence NS, Larsen PB, Ebbs SD, Letham DLD, Lasat MM, Garvin DF, Eide D, Kochian LV. 2000. The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proceedings of the National Academy of Sciences, USA97,4956–4960.
Persans MW, Yan X, Patnoe J‐MML, Krämer U, Salt DE. 1999. Molecular dissection of the role of histidine in nickel hyperaccumulation in Thlaspi goesingense (Hálácsy). Plant Physiology121,1117–1126.
Petris MJ, Mercer JF, Culvenor JG, Lockhart P, Gleeson PA, Camakaris J. 1996. Ligand‐regulated transport of the Menkes copper P‐type ATPase efflux pump from the Golgi apparatus to the plasma membrane: a novel mechanism of regulated trafficking. EMBO Journal15,6084–6095.
Prasad MNV. 1999. Metallothioneins and metal binding complexes in plants. In: Prasad MNV, Hagemeyer J, eds. Heavy metal stress in plants: from molecules to ecosystems. Berlin: Springer‐Verlag, 51–72.
Quartacci MF, Cosi E, Navari‐Izzo F. 2001. Lipids and NADPH‐dependent superoxide production in plasma membrane vesicles from roots of wheat grown under copper deficiency or excess. Journal of Experimental Botany52,77–84.
Rauser WE. 1995. Phytochelatins and related peptides. Structure, biosynthesis and function. Plant Physiology109,1141–1149.
Rauser WE. 1999. Structure and function of metal chelators produced by plants—the case for organic acids, amino acids, phytin and metallothioneins. Cell Biochemistry and Biophysics31,19–48.
Rea PA, Li Z‐S, Lu Y‐P, Drozdowicz, YM. 1998. From vacuolar GS‐X pumps to multispecific ABC transporters. Annual Review of Plant Physiology and Plant Molecular Biology49,727–760.
Robinson NJ, Tommey AM, Kuske C, Jackson PJ. 1993. Plant metallothioneins. Biochemical Journal295,1–10.
Ros ROC, Cooke DT, Burden RS, James CS. 1990. Effects of the herbicide MCPA and the heavy metals, cadmium and nickel on the lipid composition, Mg2+‐ATPase activity and fluidity of plasma membranes from rice, Oryza sativa (cv. Bahia) shoots. Journal of Experimental Botany41,457–462.
Salt DE, Kato N, Krämer U, Smith RD, Raskin I. 2000. The role of root exudates in nickel hyperaccumulation and tolerance in accumulator and nonaccumulator species of Thlaspi. In: Terry N, Banuelos G, eds. Phytoremediation of contaminated soil and water. CRC Press LLC, 189–200.
Salt DE, Rauser WE. 1995. MgATP‐dependent transport of phytochelatins across the tonoplast of oat roots. Plant Physiology107,1293–1301.
Salt DE, Smith RD, Raskin I. 1998. Phytoremediation. Annual Review of Plant Physiology and Plant Molecular Biology49,643–668.
Salt DE, Thurman DA, Tomsett AB, Sewell AK. 1989. Copper phytochelatins of Mimulus guttatus. Proceedings of the Royal Society B, London236,79–89.
Salt DE, Wagner GJ. 1993. Cadmium transport across tonoplast of vesicles from oat roots. Evidence for a Cd2+/H+ antiport activity. Journal of Biological Chemistry268,12297–12302.
Schat H, Kalff MMA. 1992. Are phytochelatins involved in differential metal tolerance or do they merely reflect metal‐imposed strain? Plant Physiology99,1475–1480.
Schat H, Llugany M, Bernhard R. 2000. Metal‐specific patterns of tolerance, uptake and transport of heavy metals in hyperaccumulating and nonhyperaccumulating metallophytes. In: Terry N, Banuelos G, eds. Phytoremediation of contaminated soil and water. CRC Press LLC, 171–188.
Silver S, Ji G. 1994. Newer systems for bacterial resistances to toxic heavy metals. Environmental Health Perspectives102,107–113.
Solioz M, Vulpe C. 1996. CPx‐type ATPases: a class of P‐type ATPases that pump heavy metals. Trends in Biochemical Sciences21,237–241.
Strange J, Macnair MR. 1991. Evidence for a role for the cell membrane in copper tolerance of Mimulus guttatus Fischer ex DC. New Phytologist119,383–388.
Steffens JC. 1990. The heavy metal‐binding peptides of plants. Annual Review of Plant Physiology and Plant Molecular Biology41,553–575.
Tam PCF. 1995. Heavy metal tolerance by ectomycorrhizal fungi and metal amelioration by Pisolithus‐tinctorius. Mycorrhiza5,181–187.
Thomine S, Wang R, Ward JM, Crawford NM, Schroeder JI. 2000. Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proceedings of the National Academy of Sciences, USA97,4991–4996.
Tomsett AB, Thurman DA. 1988. Molecular biology of metal tolerances of plants. Plant, Cell and Environment11,383–394.
Tseng TS, Tzeng SS, Yeh CH, Chang FC, Chen YM, Lin CY. 1993. The heat‐shock response in rice seedlings—isolation and expression of cDNAs that encode class‐I low‐molecular‐weight heat‐shock proteins. Plant and Cell Physiology34,165–168.
Van Assche F, Clijsters H. 1990. Effects of metals on enzyme activity in plants. Plant, Cell and Environment13,195–206.
Van der Zaal BJ, Neuteboom LW, Pinas JE, Chardonnens AN, Schat H, Verkleij JAC, Hooykaas PJJ. 1999. Overexpression of a novel Arabidopsis gene related to putative zinc‐transporter genes from animals can lead to enhanced zinc resistance and accumulation. Plant Physiology119,1047–1055.
Van Tichelen KK, Colpaert JV, Vangronsveld J. 2001. Ectomycorrhizal protection of Pinus sylvestris against copper toxicity. New Phytologist150,203–213.
Van Vliet C, Anderson CR, Cobbett CS. 1995. Copper‐sensitive mutant of Arabidopsis thaliana. Plant Physiology109,871–878.
Vatamaniuk OK, Mari S, Lu Y‐P, Rea PA. 1999. AtPCS1, a phytochelatin synthase from Arabidopsis: isolation and in vitro reconstitution. Proceedings of the National Academy of Sciences, USA96,7110–7115.
Verkleij JAC, Koevoets PLM, Mechteld MA, Blake‐Kalff MMA, Chardonnens AN. 1998. Evidence for an important role of the tonoplast in the mechanism of naturally selected zinc tolerance in Silene vulgaris. Journal of Plant Physiology153,188–191.
Vierling E. 1991. The roles of heat shock proteins in plants. Annual Review of Plant Physiology and Plant Molecular Biology42,579–620.
Wainwright SJ, Woolhouse HW. 1977. Some physiological aspects of copper and zinc tolerance in Agrostis tenuis Sibth.: cell elongation and membrane damage. Journal of Experimental Botany28,1029–1036.
Weissenhorn I, Leyval C, Belgy G, Berthelin J. 1995. Arbuscular mycorrhizal contribution to heavy‐metal uptake by maize (Zea mays L.) in pot culture with contaminated soil. Mycorrhiza5,245–251.
Williams LE, Pittman JK, Hall JL. 2000. Emerging mechanisms for heavy metal transport in plants. Biochimica et Biophysica Acta77803,1–23.
Wollgiehn R, Neumann D. 1999. Metal stress response and tolerance of cultured cells from Silene vulgaris and Lycopersicon peruvianum: role of heat stress proteins. Journal of Plant Physiology154,547–553.
Xiang C, Oliver DJ. 1998. Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis. The Plant Cell10,1539–1550.
Xiang C, Werner BL, Christensen EM, Oliver DJ. 2001. The biological functions of glutathione revisited in Arabidopsis transgenic plants with altered glutathione levels. Plant Physiology126,564–574.
Zhou J, Goldsbrough PB. 1994. Functional homologs of fungal metallothionein genes from Arabidopsis. The Plant Cell6,875–884.