Cellular hijacking: a common strategy for microbial infection
Tài liệu tham khảo
Kurland, 2000, Origin and evolution of the mitochondrial proteome, Microbiol. Mol. Biol. Rev., 64, 786, 10.1128/MMBR.64.4.786-820.2000
Stebbins, 2001, Structural mimicry in bacterial virulence, Nature, 412, 701, 10.1038/35089000
Knodler, 2001, Pathogenic trickery: deception of host cell processes, Nat. Rev. Mol. Cell Biol., 2, 578, 10.1038/35085062
Merritt, 1995, AB5 toxins, Curr. Opin. Struct. Biol., 5, 165, 10.1016/0959-440X(95)80071-9
Aman, 2001, A mutant cholera toxin B subunit that binds GM1-ganglioside but lacks immunomodulatory or toxic activity, Proc. Natl. Acad. Sci. U. S. A., 98, 8536, 10.1073/pnas.161273098
Bastiaens, 1996, Imaging the intracellular trafficking and state of the AB5 quaternary structure of cholera toxin, EMBO J., 15, 4246, 10.1002/j.1460-2075.1996.tb00799.x
Tsai, 2001, Protein disulfide isomerase acts as a redox-dependent chaperone to unfold cholera toxin, Cell, 104, 937, 10.1016/S0092-8674(01)00289-6
Schmitz, 2000, Cholera toxin is exported from microsomes by the Sec61p complex, J. Cell Biol., 148, 1203, 10.1083/jcb.148.6.1203
Kahn, 1984, Purification of a protein cofactor required for ADP-ribosylation of the stimulatory regulatory component of adenylate cyclase by cholera toxin, J. Biol. Chem., 259, 6228, 10.1016/S0021-9258(20)82130-9
Zhu, 2001, ARF binds the C-terminal region of the Escherichia coli heat-labile toxin (LTA1) and competes for the binding of LTA2, Biochemistry, 40, 4560, 10.1021/bi002628s
Gill, 1975, Involvement of nicotinamide adenine dinucleotide in the action of cholera toxin in vitro, Proc. Natl. Acad. Sci. U. S. A., 72, 2064, 10.1073/pnas.72.6.2064
Moss, 1977, Mechanism of action of choleragen. Evidence for ADP-ribosyltransferase activity with arginine as an acceptor, J. Biol. Chem., 252, 2455, 10.1016/S0021-9258(17)40578-3
Cassel, 1978, Mechanism of cholera toxin action: covalent modification of the guanyl nucleotide-binding protein of the adenylate cyclase system, Proc. Natl. Acad. Sci. U. S. A., 75, 2669, 10.1073/pnas.75.6.2669
Kahn, 1984, ADP-ribosylation of Gs promotes the dissociation of its α and β subunits, J. Biol. Chem., 259, 6235, 10.1016/S0021-9258(20)82131-0
Giamarellou, 2000, Therapeutic guidelines for Pseudomonas aeruginosa infections, Int. J. Antimicrob. Agents, 16, 103, 10.1016/S0924-8579(00)00212-0
Coburn, 1991, Pseudomonas aeruginosa exoenzyme S requires a eukaryotic protein for ADP-ribosyltransferase activity, J. Biol. Chem., 266, 6438, 10.1016/S0021-9258(18)38137-7
Barbieri, 2000, Pseudomonas aeruginosa exoenzyme S, a bifunctional type-III secreted cytotoxin, Int. J. Med. Microbiol., 290, 381, 10.1016/S1438-4221(00)80047-8
Yahr, 1996, Exoenzyme S of Pseudomonas aeruginosa is secreted by a type III pathway, Mol. Microbiol., 22, 991, 10.1046/j.1365-2958.1996.01554.x
Nicas, 1985, The role of exoenzyme S in infections with Pseudomonas aeruginosa, J. Infect. Dis., 152, 716, 10.1093/infdis/152.4.716
Goehring, 1999, The N-terminal domain of Pseudomonas aeruginosa exoenzyme S is a GTPase-activating protein for Rho GTPases, J. Biol. Chem., 274, 36369, 10.1074/jbc.274.51.36369
Iglewski, 1978, Pseudomonas aeruginosa exoenzyme S: an adenosine diphosphate ribosyltransferase distinct from toxin A, Proc. Natl. Acad. Sci. U. S. A., 75, 3211, 10.1073/pnas.75.7.3211
Fu, 1993, The eukaryotic host factor that activates exoenzyme S of Pseudomonas aeruginosa is a member of the 14-3-3 protein family, Proc. Natl. Acad. Sci. U. S. A., 90, 2320, 10.1073/pnas.90.6.2320
Henriksson, 2000, 14-3-3 proteins are required for the inhibition of Ras by exoenzyme S, Biochem. J., 349, 697, 10.1042/bj3490697
Masters, 2001, 14-3-3 proteins mediate an essential anti-apoptotic signal, J. Biol. Chem., 276, 45193, 10.1074/jbc.M105971200
Wurtele, 2001, How the Pseudomonas aeruginosa ExoS toxin down regulates Rac, Nat. Struct. Biol., 8, 23, 10.1038/83007
Stebbins, 2000, Modulation of host signaling by a bacterial mimic: structure of the Salmonella effector SptP bound to Rac1, Mol. Cell, 6, 1449, 10.1016/S1097-2765(00)00141-6
Von Pawel-Rammingen, 2000, GAP activity of the Yersinia YopE cytotoxin specifically targets the Rho pathway: a mechanism for disruption of actin microfilament structure, Mol. Microbiol., 36, 737, 10.1046/j.1365-2958.2000.01898.x
Coburn, 1991, ADP-ribosylation of p21ras and related proteins by Pseudomonas aeruginosa exoenzyme S, Infect. Immun., 59, 4259, 10.1128/IAI.59.11.4259-4262.1991
Ganesan, 1999, Pseudomonas aeruginosa exoenzyme S disrupts Ras-mediated signal transduction by inhibiting guanine nucleotide exchange factor-catalyzed nucleotide exchange, J. Biol. Chem., 274, 21823, 10.1074/jbc.274.31.21823
Henriksson, 2000, Ras effector pathway activation by epidermal growth factor is inhibited in vivo by exoenzyme S ADP-ribosylation of Ras, Biochem. J., 347, 217, 10.1042/0264-6021:3470217
Fu, 2000, 14-3-3 proteins: structure, function, and regulation, Annu. Rev. Pharmacol. Toxicol., 40, 617, 10.1146/annurev.pharmtox.40.1.617
Pederson, 1998, Intracellular expression of the ADP- ribosyltransferase domain of Pseudomonas exoenzyme S is cytotoxic to eukaryotic cells, Mol. Microbiol., 30, 751, 10.1046/j.1365-2958.1998.01106.x
Fraylick, 2001, Independent and coordinate effects of ADP-ribosyltransferase and GTPase-activating activities of exoenzyme S on HT-29 epithelial cell function, Infect. Immun., 69, 5318, 10.1128/IAI.69.9.5318-5328.2001
Kaufman, 2000, Pseudomonas aeruginosa mediated apoptosis requires the ADP-ribosylating activity of ExoS, Microbiology, 146, 2531, 10.1099/00221287-146-10-2531
Cossart, 2001, The use of host cell machinery in the pathogenesis of Listeria monocytogenes, Curr. Opin. Immunol., 13, 96, 10.1016/S0952-7915(00)00188-6
Tilney, 1989, Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes, J. Cell Biol., 109, 1597, 10.1083/jcb.109.4.1597
Robbins, 1999, Listeria monocytogenes exploits normal host cell processes to spread from cell to cell, J. Cell Biol., 146, 1333, 10.1083/jcb.146.6.1333
Kocks, 1992, L. monocytogenes-induced actin assembly requires the ActA gene product, a surface protein, Cell, 68, 521, 10.1016/0092-8674(92)90188-I
Loisel, 1999, Reconstitution of actin-based motility of Listeria and Shigella using pure proteins, Nature, 401, 613, 10.1038/44183
Skoble, 2000, Three regions within ActA promote Arp2/3 complex-mediated actin nucleation and Listeria monocytogenes motility, J. Cell Biol., 150, 527, 10.1083/jcb.150.3.527
Chakraborty, 1995, A focal adhesion factor directly linking intracellularly motile Listeria monocytogenes and Listeria ivanovii to the actin-based cytoskeleton of mammalian cells, EMBO J., 14, 1314, 10.1002/j.1460-2075.1995.tb07117.x
Smith, 1996, The tandem repeat domain in the Listeria monocytogenes ActA protein controls the rate of actin-based motility, the percentage of moving bacteria, and the localization of vasodilator-stimulated phosphoprotein and profilin, J. Cell Biol., 135, 647, 10.1083/jcb.135.3.647
Fields, 1996, The molecular ecology of legionellae, Trends Microbiol., 4, 286, 10.1016/0966-842X(96)10041-X
McDade, 1977, Legionnaires’ disease: isolation of a bacterium and demonstration of its role in other respiratory diseases, New Engl. J. Med., 297, 1197, 10.1056/NEJM197712012972202
Coers, 1999, Modulation of phagosome biogenesis by Legionella pneumophila creates an organelle permissive for intracellular growth, Nat. Cell Biol., 1, 451, 10.1038/15687
Horwitz, 1983, The Legionnaires’ disease bacterium (Legionella pneumophila) inhibits phagosome lysosome fusion in human monocytes, J. Exp. Med., 158, 2108, 10.1084/jem.158.6.2108
Tilney, 2001, How the parasitic bacterium Legionella pneumophila modifies its phagosome and transforms it into rough ER: implications for conversion of plasma membrane to the ER membrane, J. Cell Sci., 114, 4637, 10.1242/jcs.114.24.4637
Nagai, 2002, A bacterial guanine nucleotide exchange factor activates ARF on Legionella phagosomes, Science, 295, 679, 10.1126/science.1067025
Horwitz, 1983, Formation of a novel phagosome by the Legionnaires’ disease bacterium (Legionella pneumophila) in human monocytes, J. Exp. Med., 158, 1319, 10.1084/jem.158.4.1319
Burleigh, 1998, Signaling and host cell invasion by Trypanosoma cruzi, Curr. Opin. Microbiol., 1, 461, 10.1016/S1369-5274(98)80066-0
Tardieux, 1992, Lysosome recruitment and fusion are early events required for trypanosome invasion of mammalian cells, Cell, 71, 1117, 10.1016/S0092-8674(05)80061-3
Tardieux, 1994, Role in host cell invasion of Trypanosoma cruzi-induced cytosolic-free Ca2+ transients, J. Exp. Med., 179, 1017, 10.1084/jem.179.3.1017
Burleigh, 1995, A 120-kDa alkaline peptidase from Trypanosoma cruzi is involved in the generation of a novel Ca2+-signaling factor for mammalian cells, J. Biol. Chem., 270, 5172, 10.1074/jbc.270.10.5172
Rodriguez, 1997, Lysosomes behave as Ca2+-regulated exocytic vesicles in fibroblasts and epithelial cells, J. Cell Biol., 137, 93, 10.1083/jcb.137.1.93
Li, 1995, Ca2+-dependent and -independent activities of neural and non-neural synaptotagmins, Nature, 375, 594, 10.1038/375594a0
Martinez, 2000, Synaptotagmin VII regulates Ca2+-dependent exocytosis of lysosomes in fibroblasts, J. Cell Biol., 148, 1141, 10.1083/jcb.148.6.1141
Caler, 2001, The exocytosis-regulatory protein synaptotagmin VII mediates cell invasion by Trypanosoma cruzi, J. Exp. Med., 193, 1097, 10.1084/jem.193.9.1097
Bi, 1995, Calcium-regulated exocytosis is required for cell membrane resealing, J. Cell Biol., 131, 1747, 10.1083/jcb.131.6.1747
Steinhardt, 1994, Cell membrane resealing by a vesicular mechanism similar to neurotransmitter release, Science, 263, 390, 10.1126/science.7904084
Reddy, 2001, Plasma membrane repair is mediated by Ca2+-regulated exocytosis of lysosomes, Cell, 106, 157, 10.1016/S0092-8674(01)00421-4