Cellular hijacking: a common strategy for microbial infection

Trends in Biochemical Sciences - Tập 27 - Trang 308-314 - 2002
Richard A Kahn1, Haian Fu2, Craig R Roy3
1Dept Biochemistry, Emory University School of Medicine, 1510 Clifton Rd, Atlanta, GA 30322, USA
2Dept Pharmacology, Emory University School of Medicine, 1510 Clifton Rd, Atlanta, GA 30322, USA
3Yale University School of Medicine, Boyer Center for Molecular Medicine, Section of Microbial Pathogenesis, 295 Congress Ave, New Haven, CT 06536, USA

Tài liệu tham khảo

Kurland, 2000, Origin and evolution of the mitochondrial proteome, Microbiol. Mol. Biol. Rev., 64, 786, 10.1128/MMBR.64.4.786-820.2000 Stebbins, 2001, Structural mimicry in bacterial virulence, Nature, 412, 701, 10.1038/35089000 Knodler, 2001, Pathogenic trickery: deception of host cell processes, Nat. Rev. Mol. Cell Biol., 2, 578, 10.1038/35085062 Merritt, 1995, AB5 toxins, Curr. Opin. Struct. Biol., 5, 165, 10.1016/0959-440X(95)80071-9 Aman, 2001, A mutant cholera toxin B subunit that binds GM1-ganglioside but lacks immunomodulatory or toxic activity, Proc. Natl. Acad. Sci. U. S. A., 98, 8536, 10.1073/pnas.161273098 Bastiaens, 1996, Imaging the intracellular trafficking and state of the AB5 quaternary structure of cholera toxin, EMBO J., 15, 4246, 10.1002/j.1460-2075.1996.tb00799.x Tsai, 2001, Protein disulfide isomerase acts as a redox-dependent chaperone to unfold cholera toxin, Cell, 104, 937, 10.1016/S0092-8674(01)00289-6 Schmitz, 2000, Cholera toxin is exported from microsomes by the Sec61p complex, J. Cell Biol., 148, 1203, 10.1083/jcb.148.6.1203 Kahn, 1984, Purification of a protein cofactor required for ADP-ribosylation of the stimulatory regulatory component of adenylate cyclase by cholera toxin, J. Biol. Chem., 259, 6228, 10.1016/S0021-9258(20)82130-9 Zhu, 2001, ARF binds the C-terminal region of the Escherichia coli heat-labile toxin (LTA1) and competes for the binding of LTA2, Biochemistry, 40, 4560, 10.1021/bi002628s Gill, 1975, Involvement of nicotinamide adenine dinucleotide in the action of cholera toxin in vitro, Proc. Natl. Acad. Sci. U. S. A., 72, 2064, 10.1073/pnas.72.6.2064 Moss, 1977, Mechanism of action of choleragen. Evidence for ADP-ribosyltransferase activity with arginine as an acceptor, J. Biol. Chem., 252, 2455, 10.1016/S0021-9258(17)40578-3 Cassel, 1978, Mechanism of cholera toxin action: covalent modification of the guanyl nucleotide-binding protein of the adenylate cyclase system, Proc. Natl. Acad. Sci. U. S. A., 75, 2669, 10.1073/pnas.75.6.2669 Kahn, 1984, ADP-ribosylation of Gs promotes the dissociation of its α and β subunits, J. Biol. Chem., 259, 6235, 10.1016/S0021-9258(20)82131-0 Giamarellou, 2000, Therapeutic guidelines for Pseudomonas aeruginosa infections, Int. J. Antimicrob. Agents, 16, 103, 10.1016/S0924-8579(00)00212-0 Coburn, 1991, Pseudomonas aeruginosa exoenzyme S requires a eukaryotic protein for ADP-ribosyltransferase activity, J. Biol. Chem., 266, 6438, 10.1016/S0021-9258(18)38137-7 Barbieri, 2000, Pseudomonas aeruginosa exoenzyme S, a bifunctional type-III secreted cytotoxin, Int. J. Med. Microbiol., 290, 381, 10.1016/S1438-4221(00)80047-8 Yahr, 1996, Exoenzyme S of Pseudomonas aeruginosa is secreted by a type III pathway, Mol. Microbiol., 22, 991, 10.1046/j.1365-2958.1996.01554.x Nicas, 1985, The role of exoenzyme S in infections with Pseudomonas aeruginosa, J. Infect. Dis., 152, 716, 10.1093/infdis/152.4.716 Goehring, 1999, The N-terminal domain of Pseudomonas aeruginosa exoenzyme S is a GTPase-activating protein for Rho GTPases, J. Biol. Chem., 274, 36369, 10.1074/jbc.274.51.36369 Iglewski, 1978, Pseudomonas aeruginosa exoenzyme S: an adenosine diphosphate ribosyltransferase distinct from toxin A, Proc. Natl. Acad. Sci. U. S. A., 75, 3211, 10.1073/pnas.75.7.3211 Fu, 1993, The eukaryotic host factor that activates exoenzyme S of Pseudomonas aeruginosa is a member of the 14-3-3 protein family, Proc. Natl. Acad. Sci. U. S. A., 90, 2320, 10.1073/pnas.90.6.2320 Henriksson, 2000, 14-3-3 proteins are required for the inhibition of Ras by exoenzyme S, Biochem. J., 349, 697, 10.1042/bj3490697 Masters, 2001, 14-3-3 proteins mediate an essential anti-apoptotic signal, J. Biol. Chem., 276, 45193, 10.1074/jbc.M105971200 Wurtele, 2001, How the Pseudomonas aeruginosa ExoS toxin down regulates Rac, Nat. Struct. Biol., 8, 23, 10.1038/83007 Stebbins, 2000, Modulation of host signaling by a bacterial mimic: structure of the Salmonella effector SptP bound to Rac1, Mol. Cell, 6, 1449, 10.1016/S1097-2765(00)00141-6 Von Pawel-Rammingen, 2000, GAP activity of the Yersinia YopE cytotoxin specifically targets the Rho pathway: a mechanism for disruption of actin microfilament structure, Mol. Microbiol., 36, 737, 10.1046/j.1365-2958.2000.01898.x Coburn, 1991, ADP-ribosylation of p21ras and related proteins by Pseudomonas aeruginosa exoenzyme S, Infect. Immun., 59, 4259, 10.1128/IAI.59.11.4259-4262.1991 Ganesan, 1999, Pseudomonas aeruginosa exoenzyme S disrupts Ras-mediated signal transduction by inhibiting guanine nucleotide exchange factor-catalyzed nucleotide exchange, J. Biol. Chem., 274, 21823, 10.1074/jbc.274.31.21823 Henriksson, 2000, Ras effector pathway activation by epidermal growth factor is inhibited in vivo by exoenzyme S ADP-ribosylation of Ras, Biochem. J., 347, 217, 10.1042/0264-6021:3470217 Fu, 2000, 14-3-3 proteins: structure, function, and regulation, Annu. Rev. Pharmacol. Toxicol., 40, 617, 10.1146/annurev.pharmtox.40.1.617 Pederson, 1998, Intracellular expression of the ADP- ribosyltransferase domain of Pseudomonas exoenzyme S is cytotoxic to eukaryotic cells, Mol. Microbiol., 30, 751, 10.1046/j.1365-2958.1998.01106.x Fraylick, 2001, Independent and coordinate effects of ADP-ribosyltransferase and GTPase-activating activities of exoenzyme S on HT-29 epithelial cell function, Infect. Immun., 69, 5318, 10.1128/IAI.69.9.5318-5328.2001 Kaufman, 2000, Pseudomonas aeruginosa mediated apoptosis requires the ADP-ribosylating activity of ExoS, Microbiology, 146, 2531, 10.1099/00221287-146-10-2531 Cossart, 2001, The use of host cell machinery in the pathogenesis of Listeria monocytogenes, Curr. Opin. Immunol., 13, 96, 10.1016/S0952-7915(00)00188-6 Tilney, 1989, Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes, J. Cell Biol., 109, 1597, 10.1083/jcb.109.4.1597 Robbins, 1999, Listeria monocytogenes exploits normal host cell processes to spread from cell to cell, J. Cell Biol., 146, 1333, 10.1083/jcb.146.6.1333 Kocks, 1992, L. monocytogenes-induced actin assembly requires the ActA gene product, a surface protein, Cell, 68, 521, 10.1016/0092-8674(92)90188-I Loisel, 1999, Reconstitution of actin-based motility of Listeria and Shigella using pure proteins, Nature, 401, 613, 10.1038/44183 Skoble, 2000, Three regions within ActA promote Arp2/3 complex-mediated actin nucleation and Listeria monocytogenes motility, J. Cell Biol., 150, 527, 10.1083/jcb.150.3.527 Chakraborty, 1995, A focal adhesion factor directly linking intracellularly motile Listeria monocytogenes and Listeria ivanovii to the actin-based cytoskeleton of mammalian cells, EMBO J., 14, 1314, 10.1002/j.1460-2075.1995.tb07117.x Smith, 1996, The tandem repeat domain in the Listeria monocytogenes ActA protein controls the rate of actin-based motility, the percentage of moving bacteria, and the localization of vasodilator-stimulated phosphoprotein and profilin, J. Cell Biol., 135, 647, 10.1083/jcb.135.3.647 Fields, 1996, The molecular ecology of legionellae, Trends Microbiol., 4, 286, 10.1016/0966-842X(96)10041-X McDade, 1977, Legionnaires’ disease: isolation of a bacterium and demonstration of its role in other respiratory diseases, New Engl. J. Med., 297, 1197, 10.1056/NEJM197712012972202 Coers, 1999, Modulation of phagosome biogenesis by Legionella pneumophila creates an organelle permissive for intracellular growth, Nat. Cell Biol., 1, 451, 10.1038/15687 Horwitz, 1983, The Legionnaires’ disease bacterium (Legionella pneumophila) inhibits phagosome lysosome fusion in human monocytes, J. Exp. Med., 158, 2108, 10.1084/jem.158.6.2108 Tilney, 2001, How the parasitic bacterium Legionella pneumophila modifies its phagosome and transforms it into rough ER: implications for conversion of plasma membrane to the ER membrane, J. Cell Sci., 114, 4637, 10.1242/jcs.114.24.4637 Nagai, 2002, A bacterial guanine nucleotide exchange factor activates ARF on Legionella phagosomes, Science, 295, 679, 10.1126/science.1067025 Horwitz, 1983, Formation of a novel phagosome by the Legionnaires’ disease bacterium (Legionella pneumophila) in human monocytes, J. Exp. Med., 158, 1319, 10.1084/jem.158.4.1319 Burleigh, 1998, Signaling and host cell invasion by Trypanosoma cruzi, Curr. Opin. Microbiol., 1, 461, 10.1016/S1369-5274(98)80066-0 Tardieux, 1992, Lysosome recruitment and fusion are early events required for trypanosome invasion of mammalian cells, Cell, 71, 1117, 10.1016/S0092-8674(05)80061-3 Tardieux, 1994, Role in host cell invasion of Trypanosoma cruzi-induced cytosolic-free Ca2+ transients, J. Exp. Med., 179, 1017, 10.1084/jem.179.3.1017 Burleigh, 1995, A 120-kDa alkaline peptidase from Trypanosoma cruzi is involved in the generation of a novel Ca2+-signaling factor for mammalian cells, J. Biol. Chem., 270, 5172, 10.1074/jbc.270.10.5172 Rodriguez, 1997, Lysosomes behave as Ca2+-regulated exocytic vesicles in fibroblasts and epithelial cells, J. Cell Biol., 137, 93, 10.1083/jcb.137.1.93 Li, 1995, Ca2+-dependent and -independent activities of neural and non-neural synaptotagmins, Nature, 375, 594, 10.1038/375594a0 Martinez, 2000, Synaptotagmin VII regulates Ca2+-dependent exocytosis of lysosomes in fibroblasts, J. Cell Biol., 148, 1141, 10.1083/jcb.148.6.1141 Caler, 2001, The exocytosis-regulatory protein synaptotagmin VII mediates cell invasion by Trypanosoma cruzi, J. Exp. Med., 193, 1097, 10.1084/jem.193.9.1097 Bi, 1995, Calcium-regulated exocytosis is required for cell membrane resealing, J. Cell Biol., 131, 1747, 10.1083/jcb.131.6.1747 Steinhardt, 1994, Cell membrane resealing by a vesicular mechanism similar to neurotransmitter release, Science, 263, 390, 10.1126/science.7904084 Reddy, 2001, Plasma membrane repair is mediated by Ca2+-regulated exocytosis of lysosomes, Cell, 106, 157, 10.1016/S0092-8674(01)00421-4