Cellular functions of MLL/SET-family histone H3 lysine 4 methyltransferase components

Frontiers in Biology - Tập 11 - Trang 10-18 - 2016
J. K. Bailey1,2, Dzwokai Ma1,2
1Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, USA
2Neuroscience Research Institute, University of California, Santa Barbara, USA

Tóm tắt

The MLL/SET family of histone H3 lysine 4 methyltransferases form enzyme complexes with core subunits ASH2L, WDR5, RbBP5, and DPY-30 (often abbreviated WRAD), and are responsible for global histone H3 lysine 4 methylation, a hallmark of actively transcribed chromatin in mammalian cells. Accordingly, the function of these proteins is required for a wide variety of processes including stem cell differentiation, cell growth and division, body segmentation, and hematopoiesis. While most work on MLL-WRAD has focused on the function this core complex in histone methylation, recent studies indicate that MLL-WRAD proteins interact with a variety of other proteins and lncRNAs and can localize to cellular organelles beyond the nucleus. In this review, we focus on the recently described activities and interacting partners of MLL-WRAD both inside and outside the nucleus.

Tài liệu tham khảo

Ali A, Veeranki S N, Tyagi S (2014). A SET-domain-independent role of WRAD complex in cell-cycle regulatory function of mixed lineage leukemia. Nucleic Acids Res, 42(12): 7611–7624 Allis C D, Berger S L, Cote J, Dent S, Jenuwien T, Kouzarides T, Pillus L, Reinberg D, Shi Y, Shiekhattar R, Shilatifard A, Workman J, Zhang Y (2007). New nomenclature for chromatin-modifying enzymes. Cell, 131(4): 633–636 Ang Y S, Tsai S Y, Lee D F, Monk J, Su J, Ratnakumar K, Ding J, Ge Y, Darr H, Chang B, Wang J, Rendl M, Bernstein E, Schaniel C, Lemischka I R (2011). Wdr5 mediates self-renewal and reprogramming via the embryonic stem cell core transcriptional network. Cell, 145(2): 183–197 Bailey J K, Fields A T, Cheng K, Lee A, Wagenaar E, Lagrois R, Schmidt B, Xia B, Ma D (2015). WD repeat-containing protein 5 (WDR5) localizes to the midbody and regulates abscission. J Biol Chem, 290(14): 8987–9001 Bannister A J, Kouzarides T (2011). Regulation of chromatin by histone modifications. Cell Res, 21(3): 381–395 Bernstein B E, Kamal M, Lindblad-Toh K, Bekiranov S, Bailey D K, Huebert D J, McMahon S, Karlsson E K, Kulbokas E J, Gingeras T R, Schreiber S L, Lander E S (2005). Genomic maps and comparative analysis of histone modifications in human and mouse. Cell, 120(2): 169–181 Bledau A S, Schmidt K, Neumann K, Hill U, Ciotta G, Gupta A, Torres D C, Fu J, Kranz A, Stewart A F, Anastassiadis K (2014). The H3K4 methyltransferase Setd1a is first required at the epiblast stage, whereas Setd1b becomes essential after gastrulation. Development, 141(5): 1022–1035 Cao F, Chen Y, Cierpicki T, Liu Y, Basrur V, Lei M, Dou Y (2010). An Ash2L/RbBP5 heterodimer stimulates the MLL1 methyltransferase activity through coordinated substrate interactions with the MLL1 SET domain. PLoS ONE, 5(11): e14102 Chen X, Xie W, Gu P, Cai Q, Wang B, Xie Y, Dong W, He W, Zhong G, Lin T, Huang J (2015). Upregulated WDR5 promotes proliferation, self-renewal and chemoresistance in bladder cancer via mediating H3K4 trimethylation. Sci Rep, 5: 8293 Cheng J, Blum R, Bowman C, Hu D, Shilatifard A, Shen S, Dynlacht B D (2014). A role for H3K4 monomethylation in gene repression and partitioning of chromatin readers. Mol Cell, 53(6): 979–992 Cheung P, Allis C D, Sassone-Corsi P (2000). Signaling to chromatin through histone modifications. Cell, 103(2): 263–271 Clausell J, Happel N, Hale T K, Doenecke D, Beato M (2009). Histone H1 subtypes differentially modulate chromatin condensation without preventing ATP-dependent remodeling by SWI/SNF or NURF. PLoS ONE, 4(10): e0007243 Couture J F, Skiniotis G (2013). Assembling a COMPASS. Epigenetics, 8: 349–354 Dai X, Guo W, Zhan C, Liu X, Bai Z, Yang Y (2015). WDR5 expression is prognostic of breast cancer outcome. PLoS ONE, 10(9): e0124964 Dias J, Van Nguyen N, Georgiev P, Gaub A, Brettschneider J, Cusack S, Kadlec J, Akhtar A (2014). Structural analysis of the KANSL1/ WDR5/KANSL2 complex reveals that WDR5 is required for efficient assembly and chromatin targeting of the NSL complex. Genes Dev, 28(9): 929–942 Dou Y, Milne T A, Ruthenburg A J, Lee S, Lee J W, Verdine G L, Allis C D, Roeder R G (2006). Regulation of MLL1 H3K4 methyltransferase activity by its core components. Nat Struct Mol Biol, 13(8): 713–719 Ernst J, Kheradpour P, Mikkelsen T S, Shoresh N, Ward L D, Epstein C B, Zhang X, Wang L, Issner R, Coyne M, Ku M, Durham T, Kellis M, Bernstein B E (2011). Mapping and analysis of chromatin state dynamics in nine human cell types. Nature, 473(7345): 43–49 Ernst P, Vakoc C R (2012). WRAD: enabler of the SET1-family of H3K4 methyltransferases. Brief Funct Genomics, 11(3): 217–226 Fang L, Zhang J, Zhang H, Yang X, Jin X, Zhang L, Skalnik D G, Jin Y, Zhang Y, Huang X, Li J, Wong J (2016). H3K4 methyltransferase Set1a is a key Oct4 coactivactor essential for generation of Oct4 positive inner cell mass. Stem Cells, doi: 10.1002/stem.2250 Fischle W, Wang Y, Allis C D (2003). Histone and chromatin cross-talk. Curr Opin Cell Biol, 15(2): 172–183 Glaser S, Schaft J, Lubitz S, Vintersten K, van der Hoeven F, Tufteland K R, Aasland R, Anastassiadis K, Ang S L, Stewart A F (2006). Multiple epigenetic maintenance factors implicated by the loss of Mll2 in mouse development. Development, 133(8): 1423–1432 Gomez J A, Wapinski O L, Yang Y W, Bureau J F, Gopinath S, Monack D M, Chang H Y, Brahic M, Kirkegaard K (2013). The NeST long ncRNA controls microbial susceptibility and epigenetic activation of the interferon-g locus. Cell, 152(4): 743–754 Gori F, Friedman L G, Demay M B (2006). Wdr5, a WD-40 protein, regulates osteoblast differentiation during embryonic bone development. Dev Biol, 295(2): 498–506 Grebien F, Vedadi M, Getlik M, Giambruno R, Grover A, Avellino R, Skucha A, Vittori S, Kuznetsova E, Smil D, Barsyte-Lovejoy D, Li F, Poda G, Schapira M, Wu H, Dong A, Senisterra G, Stukalov A, Huber K V, Schönegger A, Marcellus R, Bilban M, Bock C, Brown P J, Zuber J, Bennett K L, Al-Awar R, Delwel R, Nerlov C, Arrowsmith C H, Superti-Furga G (2015). Pharmacological targeting of the Wdr5-MLL interaction in C/EBPa N-terminal leukemia. Nat Chem Biol, 11(8): 571–578 Harshman S W, Young N L, Parthun M R, Freitas M A (2013). H1 histones: current perspectives and challenges. Nucleic Acids Res, 41(21): 9593–9609 He X, Chen X, Zhang X, Duan X, Pan T, Hu Q, Zhang Y, Zhong F, Liu J, Zhang H, Luo J, Wu K, Peng G, Luo H, Zhang L, Li X, Zhang H (2015). An Lnc RNA (GAS5)/SnoRNA-derived piRNA induces activation of TRAIL gene by site-specifically recruiting MLL/COMPASS-like complexes. Nucleic Acids Res, 43(7): 3712–3725 Herz H M, Mohan M, Garruss A S, Liang K, Takahashi Y H, Mickey K, Voets O, Verrijzer C P, Shilatifard A (2012). Enhancer-associated H3K4 monomethylation by Trithorax-related, the Drosophila homolog of mammalian Mll3/Mll4. Genes Dev, 26(23): 2604–2620 Higa L A, Wu M, Ye T, Kobayashi R, Sun H, Zhang H (2006). CUL4- DDB1 ubiquitin ligase interacts with multiple WD40-repeat proteins and regulates histone methylation. Nat Cell Biol, 8(11): 1277–1283 Hu D, Gao X, Morgan M A, Herz H M, Smith E R, Shilatifard A (2013). The MLL3/MLL4 branches of the COMPASS family function as major histone H3K4 monomethylases at enhancers. Mol Cell Biol, 33(23): 4745–4754 Hu D, Gao X, Morgan M A, Herz H M, Smith E R, Shilatifard A (2013). The MLL3/MLL4 branches of the COMPASS family function as major histone H3K4 monomethylases at enhancers. Mol Cell Biol, 33(23): 4745–4754 Jenuwein T, Allis C D (2001). Translating the histone code. Science, 293 (5532): 1074–1080 Jiang D, Gu X, He Y (2009). Establishment of the winter-annual growth habit via FRIGIDA-mediated histone methylation at FLOWERING LOCUS C in Arabidopsis. Plant Cell, 21(6): 1733–1746 Jiang D, Kong N C, Gu X, Li Z, He Y (2011). Arabidopsis COMPASSlike complexes mediate histone H3 lysine-4 trimethylation to control floral transition and plant development. PLoS Genet, 7(3): e1001330 Jiang H, Shukla A, Wang X, Chen W Y, Bernstein B E, Roeder R G (2011). Role for Dpy-30 in ES cell-fate specification by regulation of H3K4 methylation within bivalent domains. Cell, 144(4): 513–525 Khare S P, Habib F, Sharma R, Gadewal N, Gupta S, Galande S (2012). HIstome—a relational knowledgebase of human histone proteins and histone modifying enzymes. Nucleic Acids Res, 40(Database issue): D337–D342 Kornberg R D (1977). Structure of chromatin. Annu Rev Biochem, 46(1): 931–954 Latham J A, Chosed R J, Wang S, Dent S Y (2011). Chromatin signaling to kinetochores: transregulation of Dam1 methylation by histone H2B ubiquitination. Cell, 146(5): 709–719 Lee J E, Wang C, Xu S, Cho Y W, Wang L, Feng X, Baldridge A, Sartorelli V, Zhuang L, Peng W, Ge K (2013). H3K4 mono- and dimethyltransferase MLL4 is required for enhancer activation during cell differentiation. eLife, 2: e01503 Lee J, Saha P K, Yang Q H, Lee S, Park J Y, Suh Y, Lee S K, Chan L, Roeder R G, Lee J W (2008). Targeted inactivation of MLL3 histone H3-Lys-4 methyltransferase activity in the mouse reveals vital roles for MLL3 in adipogenesis. Proc Natl Acad Sci USA, 105(49): 19229–19234 Li Y, Han J, Zhang Y, Cao F, Liu Z, Li S, Wu J, Hu C, Wang Y, Shuai J, Chen J, Cao L, Li D, Shi P, Tian C, Zhang J, Dou Y, Li G, Chen Y, Lei M (2016). Structural basis for activity regulation of MLL family methyltransferases. Nature, 530: 447–452 Liu C, Zhang Y, Hou Y, Shen L, Li Y, Guo W, Xu D, Liu G, Zhao Z, Man K, Pan Y, Wang Z, Chen Y (2015). PAQR3 modulates H3K4 trimethylation by spatial modulation of the regulatory subunits of COMPASS-like complexes in mammalian cells. Biochem J, 467(3): 415–424 Luger K, Mäder A W, Richmond R K, Sargent D F, Richmond T J (1997). Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature, 389(6648): 251–260 Marazzi I, Ho J S Y, Kim J, Manicassamy B, Dewell S, Albrecht R A, Seibert C W, Schaefer U, Jeffrey K L, Prinjha R K, Lee K, García- Sastre A, Roeder R G, Tarakhovsky A (2012). Suppression of the antiviral response by an influenza histone mimic. Nature, 483(7390): 428–433 Martin C, Zhang Y (2005). The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol, 6(11): 838–849 Messner S, Altmeyer M, Zhao H, Pozivil A, Roschitzki B, Gehrig P, Rutishauser D, Huang D, Caflisch A, Hottiger M O (2010). PARP1 ADP-ribosylates lysine residues of the core histone tails. Nucleic Acids Res, 38(19): 6350–6362 Miller T, Krogan N J, Dover J, Erdjument-Bromage H, Tempst P, Johnston M, Greenblatt J F, Shilatifard A (2001). COMPASS: a complex of proteins associated with a trithorax-related SET domain protein. Proc Natl Acad Sci USA, 98(23): 12902–12907 Ng H H, Robert F, Young R A, Struhl K (2003). Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity. Mol Cell, 11(3): 709–719 Nogales E, Ramey V H (2009). Structure-function insights into the yeast Dam1 kinetochore complex. J Cell Sci, 122(Pt 21): 3831–3836 Odho Z, Southall S M, Wilson J R (2010). Characterization of a novel WDR5-binding site that recruits RbBP5 through a conserved motif to enhance methylation of histone H3 lysine 4 by mixed lineage leukemia protein-1. J Biol Chem, 285(43): 32967–32976 Okamura K, Nakai K (2008). Retrotransposition as a source of new promoters. Mol Biol Evol, 25(6): 1231–1238 Pashkova N, Gakhar L, Winistorfer S C, Yu L, Ramaswamy S, Piper R C (2010). WD40 repeat propellers define a ubiquitin-binding domain that regulates turnover of F box proteins. Mol Cell, 40(3): 433–443 Patel A, Vought V E, Swatkoski S, Viggiano S, Howard B, Dharmarajan V, Monteith K E, Kupakuwana G, Namitz K E, Shinsky S A, Cotter R J, Cosgrove M S (2014). Automethylation activities within the mixed lineage leukemia-1 (MLL1) core complex reveal evidence supporting a “two-active site” model for multiple histone H3 lysine 4 methylation. J Biol Chem, 289(2): 868–884 Pokholok D K, Harbison C T, Levine S, Cole M, Hannett N M, Lee T I, Bell G W, Walker K, Rolfe P A, Herbolsheimer E, Zeitlinger J, Lewitter F, Gifford D K, Young R A (2005). Genome-wide map of nucleosome acetylation and methylation in yeast. Cell, 122(4): 517–527 Qin S, Liu Y, Tempel W, Eram M S, Bian C, Liu K, Senisterra G, Crombet L, Vedadi M, Min J (2014). Structural basis for histone mimicry and hijacking of host proteins by influenza virus protein NS1. Nat Commun, 5: 3952 Rea S, Eisenhaber F, O’Carroll D, Strahl B D, Sun Z W, Schmid M, Opravil S, Mechtler K, Ponting C P, Allis C D, Jenuwein T (2000). Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature, 406(6796): 593–599 Ruthenburg A J, Allis C D, Wysocka J (2007). Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark. Mol Cell, 25(1): 15–30 Santos-Rosa H, Schneider R, Bannister A J, Sherriff J, Bernstein B E, Emre N C, Schreiber S L, Mellor J, Kouzarides T (2002). Active genes are tri-methylated at K4 of histone H3. Nature, 419(6905): 407–411 Schneider R, Bannister A J, Myers F A, Thorne A W, Crane-Robinson C, Kouzarides T (2004). Histone H3 lysine 4 methylation patterns in higher eukaryotic genes. Nat Cell Biol, 6(1): 73–77 Sebastian S, Sreenivas P, Sambasivan R, Cheedipudi S, Kandalla P, Pavlath G K, Dhawan J (2009). MLL5, a trithorax homolog, indirectly regulates H3K4 methylation, represses cyclin A2 expression, and promotes myogenic differentiation. Proc Natl Acad Sci USA, 106(12): 4719–4724 Shilatifard A (2008). Molecular implementation and physiological roles for histone H3 lysine 4 (H3K4) methylation. Curr Opin Cell Biol, 20(3): 341–348 Shinsky S A, Cosgrove M S (2015). Unique Role of the WD-40 Repeat Protein 5 (WDR5) Subunit within the Mixed Lineage Leukemia 3 (MLL3) Histone Methyltransferase Complex. J Biol Chem, 290(43): 25819–25833 Shinsky S A, Hu M, Vought V E, Ng S B, Bamshad M J, Shendure J, Cosgrove M S (2014). A non-active-site SET domain surface crucial for the interaction of MLL1 and the RbBP5/Ash2L heterodimer within MLL family core complexes. J Mol Biol, 426(12): 2283–2299 Skarnes W C, Rosen B, West A P, Koutsourakis M, Bushell W, Iyer V, Mujica A O, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong P J, Stewart A F, Bradley A (2011). A conditional knockout resource for the genome-wide study of mouse gene function. Nature, 474(7351): 337–342 Southall S M, Wong P S, Odho Z, Roe S M, Wilson J R (2009). Structural basis for the requirement of additional factors for MLL1 SET domain activity and recognition of epigenetic marks. Mol Cell, 33(2): 181–191 Stoller J Z, Huang L, Tan C C, Huang F, Zhou D D, Yang J, Gelb B D, Epstein J A (2010). Ash2l interacts with Tbx1 and is required during early embryogenesis. Exp Biol Med (Maywood), 235(5): 569–576 Takahashi Y H, Westfield G H, Oleskie A N, Trievel R C, Shilatifard A, Skiniotis G (2011). Structural analysis of the core COMPASS family of histone H3K4 methylases from yeast to human. Proc Natl Acad Sci USA, 108(51): 20526–20531 Terranova R, Agherbi H, Boned A, Meresse S, Djabali M (2006). Histone and DNA methylation defects at Hox genes in mice expressing a SET domain-truncated form of Mll. Proc Natl Acad Sci USA, 103(17): 6629–6634 Thakur J, Sanyal K (2011). The essentiality of the fungus-specific Dam1 complex is correlated with a one-kinetochore-one-microtubule interaction present throughout the cell cycle, independent of the nature of a centromere. Eukaryot Cell, 10(10): 1295–1305 Thoma F, Koller T (1977). Influence of histone H1 on chromatin structure. Cell, 12(1): 101–107 Thoma F, Koller T, Klug A (1979). Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin. J Cell Biol, 83(2 Pt 1): 403–427 Thomas L R, Foshage A M, Weissmiller A M, Tansey WP (2015b). The MYC-WDR5 Nexus and Cancer. Cancer Res, 75(19): 4012–4015 Thomas L R, Wang Q, Grieb B C, Phan J, Foshage A M, Sun Q, Olejniczak E T, Clark T, Dey S, Lorey S, Alicie B, Howard G C, Cawthon B, Ess K C, Eischen C M, Zhao Z, Fesik S W, Tansey W P (2015a). Interaction with WDR5 promotes target gene recognition and tumorigenesis by MYC. Mol Cell, 58(3): 440–452 Trievel R C, Shilatifard A (2009). WDR5, a complexed protein. Nat Struct Mol Biol, 16(7): 678–680 Usenovic M, Knight A L, Ray A, Wong V, Brown K R, Caldwell G A, Caldwell K A, Stagljar I, Krainc D (2012). Identification of novel ATP13A2 interactors and their role in a-synuclein misfolding and toxicity. Hum Mol Genet, 21(17): 3785–3794 van Nuland R, Smits A H, Pallaki P, Jansen P W, Vermeulen M, Timmers H T (2013). Quantitative dissection and stoichiometry determination of the human SET1/MLL histone methyltransferase complexes. Mol Cell Biol, 33(10): 2067–2077 Vinckenbosch N, Dupanloup I, Kaessmann H (2006). Evolutionary fate of retroposed gene copies in the human genome. Proc Natl Acad Sci USA, 103(9): 3220–3225 Wang K C, Yang YW, Liu B, Sanyal A, Corces-Zimmerman R, Chen Y, Lajoie B R, Protacio A, Flynn R A, Gupta R A, Wysocka J, Lei M, Dekker J, Helms J A, Chang H Y (2011). A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature, 472(7341): 120–124 Wang Y Y, Liu L J, Zhong B, Liu T T, Li Y, Yang Y, Ran Y, Li S, Tien P, Shu H B (2010). WDR5 is essential for assembly of the VISAassociated signaling complex and virus-triggered IRF3 and NFkappaB activation. Proc Natl Acad Sci USA, 107(2): 815–820 Wang Y, Wysocka J, Sayegh J, Lee Y H, Perlin J R, Leonelli L, Sonbuchner L S, McDonald C H, Cook R G, Dou Y, Roeder R G, Clarke S, Stallcup M R, Allis C D, Coonrod S A (2004). Human PAD4 regulates histone arginine methylation levels via demethylimination. Science, 306(5694): 279–283 Wu M, Wang P F, Lee J S, Martin-Brown S, Florens L, Washburn M, Shilatifard A (2008). Molecular regulation of H3K4 trimethylation by Wdr82, a component of human Set1/COMPASS. Mol Cell Biol, 28(24): 7337–7344 Xia B, Joubert A, Groves B, Vo K, Ashraf D, Djavaherian D, Awe J, Xiong Y, Cherfils J, Ma D (2010). Modulation of cell adhesion and migration by the histone methyltransferase subunit mDpy-30 and its interacting proteins. PLoS ONE, 5(7): e11771 Xu Z, Gong Q, Xia B, Groves B, Zimmermann M, Mugler C, Mu D, Matsumoto B, Seaman M, Ma D (2009). A role of histone H3 lysine 4 methyltransferase components in endosomal trafficking. J Cell Biol, 186(3): 343–353 Yagi H, Deguchi K, Aono A, Tani Y, Kishimoto T, Komori T (1998). Growth disturbance in fetal liver hematopoiesis of Mll-mutant mice. Blood, 92(1): 108–117 Yang YW, Flynn R A, Chen Y, Qu K,Wan B, Wang K C, Lei M, Chang H Y (2014). Essential role of lncRNA binding for WDR5 maintenance of active chromatin and embryonic stem cell pluripotency. eLife, 3: e02046 Yu B D, Hess J L, Horning S E, Brown G A, Korsmeyer S J (1995). Altered Hox expression and segmental identity in Mll-mutant mice. Nature, 378(6556): 505–508 Zhang K, Lin W, Latham J A, Riefler G M, Schumacher J M, Chan C, Tatchell K, Hawke D H, Kobayashi R, Dent S Y (2005). The Set1 methyltransferase opposes Ipl1 aurora kinase functions in chromosome segregation. Cell, 122(5): 723–734 Zhang P, Bergamin E, Couture J F (2013). The many facets of MLL1 regulation. Biopolymers, 99(2): 136–145 Zhang P, Lee H, Brunzelle J S, Couture J F (2012). The plasticity of WDR5 peptide-binding cleft enables the binding of the SET1 family of histone methyltransferases. Nucleic Acids Res, 40(9): 4237–4246 Zhou P, Wang Z, Yuan X, Zhou C, Liu L, Wan X, Zhang F, Ding X, Wang C, Xiong S, Wang Z, Yuan J, Li Q, Zhang Y (2013). Mixed lineage leukemia 5 (MLL5) protein regulates cell cycle progression and E2F1-responsive gene expression via association with host cell factor-1 (HCF-1). J Biol Chem, 288(24): 17532–17543 Zhu E D, Demay M B, Gori F (2008). Wdr5 is essential for osteoblast differentiation. J Biol Chem, 283(12): 7361–7367