Cơ chế lão hóa tế bào trong bệnh thoái hóa khớp gối

Springer Science and Business Media LLC - Tập 27 - Trang 421-429 - 2016
P. K. Sacitharan1, T. L. Vincent1
1ARUK Centre for Osteoarthritis Pathogenesis, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, England, UK

Tóm tắt

Tuổi tác là yếu tố nguy cơ độc lập mạnh nhất trong sự phát triển của bệnh thoái hóa khớp (OA) và trong nhiều năm, người ta đã cho rằng điều này là do chấn thương vi mô lặp đi lặp lại của bề mặt khớp theo thời gian, hay còn gọi là viêm khớp do mài mòn. Khi hiểu biết của chúng ta về cơ chế sinh bệnh của OA ngày càng tinh vi, chúng ta đã có cái nhìn mới về vai trò của tuổi tác đối với căn bệnh này. Quá trình phá vỡ sụn trong bệnh này không phải là một quá trình thụ động, mà là quá trình liên quan đến việc kích thích và hoạt hóa các enzyme phân hủy ma trận đặc hiệu; các tế bào sụn rất nhạy cảm với những thay đổi trong môi trường cơ học, viêm và trao đổi chất của khớp; sụn liên tục thích nghi với những thay đổi này bằng cách điều chỉnh ma trận của nó. Tuổi tác ảnh hưởng đến tất cả các quá trình này. Trong bài tổng quan này, chúng tôi sẽ thảo luận về cách mà tuổi tác ảnh hưởng đến cấu trúc mô, mức độ sử dụng khớp và sự chuyển hóa tế bào. Chúng tôi mô tả những gì đã được biết về các con đường liên quan đến lão hóa trong các hệ thống mẫu khác và thảo luận về giá trị tiềm năng của việc nhắm mục tiêu đến những con đường này trong OA.

Từ khóa

#lão hóa tế bào #thoái hóa khớp #cơ chế sinh bệnh #enzyme phân hủy ma trận #tế bào sụn

Tài liệu tham khảo

Aigner T, Fundel K, Saas J et al (2006) Large-scale gene expression profiling reveals major pathogenetic pathways of cartilage degeneration in osteoarthritis. Arthritis Rheum 54:3533–3544. doi:10.1002/art.22174 Ailixiding M, Aibibula Z, Iwata M et al (2015) Pivotal role of Sirt6 in the crosstalk among ageing, metabolic syndrome and osteoarthritis. Biochem Biophys Res Commun 466:319–326. doi:10.1016/j.bbrc.2015.09.019 Akasaki Y, Alvarez-Garcia O, Saito M et al (2014a) FOXO transcription factors support oxidative stress resistance in human chondrocytes. Arthritis Rheumatol (Hoboken, NJ). doi:10.1002/art.38868 Akasaki Y, Hasegawa A, Saito M et al (2014b) Dysregulated FOXO transcription factors in articular cartilage in ageing and osteoarthritis. Osteoarthr Cartil 22:162–170. doi:10.1016/j.joca.2013.11.004 Baker MS, Feigan JLD (1988) Chondrocyte antioxidant defences: the roles of catalase and glutathione peroxidase in protection against H2O2 dependent inhibition of proteoglycan biosynthesis. J Rheumatol 15:670–677 Bank RA, Bayliss MT, Lafeber FP, Maroudas A, TeKoppele JM (1998) Ageing and zonal variation in post-translational modification of collagen in normal human articular cartilage. The age-related increase in non-enzymatic glycation affects biomechanical properties of cartilage. Biochem J 330(Pt 1):345–351 Bijlsma JWJ, Berenbaum F, Lafeber FPJG (2011) Osteoarthritis: an update with relevance for clinical practice. Lancet 377:2115–2126. doi:10.1016/S0140-6736(11)60243-2 Boileau C, Martel-pelletier J, Fahmi H, Boily M (2007) The peroxisome proliferator—activated receptor Υ agonist pioglitazone reduces the development of cartilage lesions in an experimental dog model of osteoarthritis in vivo protective effects mediated through the inhibition of key signaling and catabolic pathways. Arthritis Rheum 56:2288–2298. doi:10.1002/art.22726 Bouderlique T, Vuppalapati KK, Newton PT et al (2015) Targeted deletion of Atg5 in chondrocytes promotes age-related osteoarthritis. Ann Rheum Dis Annrheumdis. doi:10.1136/annrheumdis-2015-207742 Boya P, Reggiori F, Codogno P (2013) Emerging regulation and functions of autophagy. Nat Cell Biol 15:1017–11018. doi:10.1038/ncb2815 Brandt KD, Dieppe P, Radin EL (2009) Commentary: is it useful to subset “primary” osteoarthritis? A critique based on evidence regarding the etiopathogenesis of osteoarthritis. Semin Arthritis Rheum 39(2):81–95. doi:10.1016/j.semarthrit.2009.06.001 Brook MS, Wilkinson DJ, Phillips BE, Perez-Schindler J, Philp A, Smith K, Atherton PJ (2016) Skeletal muscle homeostasis and plasticity in youth and ageing: impact of nutrition and exercise. Acta Physiol (Oxford, England) 216(1):15–41. doi:10.1111/apha.12532 Burleigh A, Chanalaris A, Gardiner MD, Driscoll C, Boruc O, Saklatvala J, Vincent TL (2012) Joint immobilization prevents murine osteoarthritis and reveals the highly mechanosensitive nature of protease expression in vivo. Arthritis Rheum 64(7):2278–2288. doi:10.1002/art.34420 Carames B, Hasegawa A, Taniguchi N et al (2012) Autophagy activation by rapamycin reduces severity of experimental osteoarthritis. Ann Rheum Dis 71:575–581. doi:10.1136/annrheumdis-2011-200557 Caramés B, Taniguchi N, Otsuki S et al (2010) Autophagy is a protective mechanism in normal cartilage, and its ageing-related loss is linked with cell death and osteoarthritis. Arthritis Rheum 62:791–801. doi:10.1002/art.27305 Caramés B, Olmer M, Kiosses WB, Lotz MK (2015) The relationship of autophagy defects to cartilage damage during joint ageing in a mouse model. Arthritis Rheumatol 67:1568–1576. doi:10.1002/art.39073 Clements KM, Price JS, Chambers MG, Visco DM, Poole AR, Mason RM (2003) Gene deletion of either interleukin-1beta, interleukin-1beta-converting enzyme, inducible nitric oxide synthase, or stromelysin 1 accelerates the development of knee osteoarthritis in mice after surgical transection of the medial collateral ligament and partial medial meniscectomy. Arthritis Rheum 48(12):3452–3463. doi:10.1002/art.11355 Clockaerts S, Bastiaansen-jenniskens YM, Feijt C et al (2011) Peroxisome proliferator activated receptor alpha activation decreases inflammatory and destructive responses in osteoarthritic cartilage. Osteoarthr Cartil 19:895–902. doi:10.1016/j.joca.2011.03.010 Del Carlo M, Loeser RF (2003) Increased oxidative stress with ageing reduces chondrocyte survival: correlation with intracellular glutathione levels. Arthritis Rheum 48:3419–3430. doi:10.1002/art.11338 Dvir-Ginzberg M, Gagarina V, Lee E-J, Hall DJ (2008) Regulation of cartilage-specific gene expression in human chondrocytes by SirT1 and nicotinamide phosphoribosyltransferase. J Biol Chem 283:36300–36310. doi:10.1074/jbc.M803196200 Eijkelenboom A, Burgering BMT (2013) FOXOs: signalling integrators for homeostasis maintenance. Nat Rev Mol Cell Biol 14:83–97. doi:10.1038/nrm3507 Ekenstedt KJ, Sonntag WE, Loeser RF et al (2006) Effects of chronic growth hormone and insulin-like growth factor 1 deficiency on osteoarthritis severity in rat knee joints. Arthritis Rheum 54:3850–3858. doi:10.1002/art.22254 Fortier LA, Mohammed HO, Lust G, Nixon JA (2002) Cell-Based Repair of Articular Cartilage. J Bone Jt Surg Br 84:276–288 Francois M, Richette P, Tsagris L et al (2006) Activation of the peroxisome proliferator-activated receptor alpha pathway potentiates interleukin-1 receptor antagonist production in cytokine-treated chondrocytes. Arthritis Rheum 54:1233–1245. doi:10.1002/art.21728 Fujita N, Matsushita T, Ishida K et al (2011) Potential involvement of SIRT1 in the pathogenesis of osteoarthritis through the modulation of chondrocyte gene expressions. J Orthop Res 29:511–515. doi:10.1002/jor.21284 Fukai A, Kamekura S, Chikazu D, Nakagawa T, Hirata M, Saito T et al (2012) Lack of a chondroprotective effect of cyclooxygenase 2 inhibition in a surgically induced model of osteoarthritis in mice. Arthritis Rheum 64(1):198–203. doi:10.1002/art.33324 Fukumoto T, Sperling JW, Sanyal A et al (2003) Combined effects of insulin-like growth factor-1 and transforming growth factor-beta1 on periosteal mesenchymal cells during chondrogenesis in vitro. Osteoarthr Cartil 11:55–64. doi:10.1053/joca.2002.0869 Gabay O, Oppenheimer H, Meir H, Zaal K, Sanchez C, Dvir-Ginzberg M (2012) Increased apoptotic chondrocytes in articular cartilage from adult heterozygous SirT1 mice. Ann Rheum Dis 71(4):613–616. doi:10.1136/ard.2011.200504 Gabay O, Sanchez C, Dvir-Ginzberg M et al (2013) Sirtuin 1 enzymatic activity is required for cartilage homeostasis in vivo in a mouse model. Arthritis Rheum 65:159–166. doi:10.1002/art.37750 Giblin W, Skinner ME, Lombard DB (2014) Sirtuins: guardians of mammalian healthspan. Trends Genet 30:271–286. doi:10.1016/j.tig.2014.04.007 Glasson SS (2007) In vivo osteoarthritis target validation utilizing genetically- modified mice. Curr Drug Targets 8:367–376 Glasson SS, Askew R, Sheppard B et al (2005) Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis. Nature 434:644–648. doi:10.1038/nature05640 Glyn-Jones S, Palmer AJR, Agricola R et al (2015) Osteoarthritis. Lancet 386:376–387. doi:10.1016/S0140-6736(14)60802-3 Goodrich LR, Hidaka C, Robbins PD et al (2007) Genetic modification of chondrocytes with insulin-like growth factor-1 enhances cartilage healing in an equine model. J Bone Jt Surg 89:672–685. doi:10.1302/0301-620X.89B5.18343 Gorrini C, Harris IS, Mak TW (2013) Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov 12:931–947. doi:10.1038/nrd4002 Hetz C (2012) The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Public Gr 13:89–102. doi:10.1038/nrm3270 Hickery MS, Bayliss MT, Dudhia J, Lewthwaite JC, Edwards JCW, Pitsillides AA (2003) Age-related changes in the response of human articular cartilage to IL-1alpha and transforming growth factor-beta (TGF-beta): chondrocytes exhibit a diminished sensitivity to TGF-beta. J Biol Chem 278(52):53063–53071. doi:10.1074/jbc.M209632200 Holzenberger M, Dupont J, Ducos B et al (2003) IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 421:182–187. doi:10.1038/nature01298 Husa M, Petursson F, Lotz M et al (2013) C/EBP homologous protein drives pro- catabolic responses in chondrocytes. Arthritis Res Ther 15:R218. doi:10.1186/ar4415 Jallali N, Ridha H, Thrasivoulou C et al (2005) Vulnerability to ROS-induced cell death in ageing articular cartilage: the role of antioxidant enzyme activity. Osteoarthr Cartil 13:614–622. doi:10.1016/j.joca.2005.02.011 Jallali N, Ridha H, Thrasivoulou C et al (2007) Modulation of intracellular reactive oxygen species level in chondrocytes by IGF-1, FGF, and TGF-beta1. Connect Tissue Res 48:149–158. doi:10.1080/03008200701331516 Kuro-o M (2009) Klotho and ageing. Biochim Biophys Acta-Gener Subj 1790:1049–1058. doi:10.1016/j.bbagen.2009.02.005 Kurosu H, Yamamoto M, Clark JD et al (2005) Suppression of ageing in mice by the hormone Klotho. Science 309:1829–1833. doi:10.1126/science.1112766 Lauder RM, Huckerby TN, Brown GM, Bayliss MT, Nieduszynski IA (2001) Age-related changes in the sulphation of the chondroitin sulphate linkage region from human articular cartilage aggrecan. Biochem J 358(Pt 2):523–528 Little C, Smith M (2008) Animal models of osteoarthritis. Curr Rheumatol Rev 4:175–182. doi:10.2174/157339708785133523 Liu Y, Zhou J, Zhao W et al (2012) XBP1S associates with RUNX2 and regulates chondrocyte hypertrophy. J Biol Chem 287:34500–34513. doi:10.1074/jbc.M112.385922 Liu-Bryan R, Terkeltaub R (2015) Emerging regulators of the inflammatory process in osteoarthritis. Nat Rev Rheumatol 11:35–44. doi:10.1038/nrrheum.2014.162 Lo YY, Cruz TF (1995) Involvement of reactive oxygen species in cytokine and growth factor induction of c-fos expression in chondrocytes. J Biol Chem 270:11727–11730 Loeser RF (2012) Ageing and osteoarthritis. Curr Opin Rheumatol 23:492–496. doi:10.1097/BOR.0b013e3283494005 Loeser RF, Shanker G, Carlson CS et al (2000) Reduction in the chondrocyte response to insulin-like growth factor 1 in ageing and osteoarthritis: studies in a non-human primate model of naturally occurring disease. Arthritis Rheum 43:2110–2120. doi:10.1002/1529-0131(200009)43:9<2110:AID-ANR23>3.0.CO;2-U Loeser RF, Carlson CS, Del Carlo M, Cole A (2002) Detection of nitrotyrosine in ageing and osteoarthritic cartilage: correlation of oxidative damage with the presence of interleukin-1β and with chondrocyte resistance to insulin-like growth factor 1. Arthritis Rheum 46:2349–2357. doi:10.1002/art.10496 Loeser RF, Olex A, Mcnulty MA et al (2013) Microarray analysis reveals age-related differences in gene expression during the development of osteoarthritis in mice. Arthritis Rheum 64:705–717. doi:10.1002/art.33388.Microarray Lotz MK, Caramés B (2011) Autophagy and cartilage homeostasis mechanisms in joint health, ageing and OA. Nat Rev Rheumatol 7:579–587. doi:10.1038/nrrheum.2011.109 Madej W, van Caam A, Blaney Davidson EN, Hannink G, Buma P, van der Kraan PM (2015) Ageing is associated with reduction of mechanically-induced activation of Smad2/3P signaling in articular cartilage. Osteoarthr Cartil/OARS, Osteoarthr Res Soc. doi:10.1016/j.joca.2015.07.018 Matsuzaki T, Matsushita T, Takayama K et al (2013) Disruption of Sirt1 in chondrocytes causes accelerated progression of osteoarthritis under mechanical stress and during ageing in mice. Ann Rheum Dis. doi:10.1136/annrheumdis-2012-202620 Morales TI (2008) The quantitative and functional relation between insulin-like growth factor-I (IGF) and IGF-binding proteins during human osteoarthritis. J Orthop Res 26:465–474. doi:10.1002/jor.20549 Morris BJ (2013) Seven sirtuins for seven deadly diseases of ageing. Free Radic Biol Med 56:133–171. doi:10.1016/j.freeradbiomed.2012.10.525 Nagase H, Kashiwagi M (2003) Aggrecanases and cartilage matrix degradation. Arthritis Res Ther 5:94–103. doi:10.1186/ar630 Nagase H, Visse R, Murphy G (2006) Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res 69:562–573. doi:10.1016/j.cardiores.2005.12.002 Nathan C, Cunningham-Bussel A (2013) Beyond oxidative stress: an immunologist’s guide to reactive oxygen species. Nat Rev Immunol 13:349–361. doi:10.1038/nri3423 Orlowsky EW, Kraus VB (2015) The role of innate immunity in osteoarthritis: when our first line of defense goes on the offensive. J Rheumatol 42(3):363–371. doi:10.3899/jrheum.140382 Pearle AD, Warren RF, Rodeo S (2005) Basic science of articular cartilage and osteoarthritis. Clin Sports Med 24:1–12. doi:10.1016/j.csm.2004.08.007 Peters JM, Shah YM, Gonzalez FJ (2012) The role of peroxisome proliferator- activated receptors in carcinogenesis and chemoprevention. Nat Public Gr 12:181–195. doi:10.1038/nrc3214 Petursson F, Husa M, June R et al (2013) Linked decreases in liver kinase B1 and AMP-activated protein kinase activity modulate matrix catabolic responses to biomechanical injury in chondrocytes. Arthritis Res Ther 15:R77. doi:10.1186/ar4254 Ratneswaran A, LeBlanc EAA, Walser E et al (2015) Peroxisome proliferator- activated receptor δ promotes the progression of posttraumatic osteoarthritis in a mouse model. Arthritis Rheumatol (Hoboken, NJ) 67:454–464. doi:10.1002/art.38915 Razzell W, Evans IR, Martin P, Wood W (2013) Calcium flashes orchestrate the wound inflammatory response through DUOX activation and hydrogen peroxide release. Curr Biol 23(5):424–429. doi:10.1016/j.cub.2013.01.058 Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8:519–529. doi:10.1038/nrm2199 Rubinsztein DC, Mariño G, Kroemer G (2011) Autophagy and ageing. Cell 146:682–695. doi:10.1016/j.cell.2011.07.030 Ruiz-Romero C, López-Armada MJ, Blanco FJ (2006) Mitochondrial proteomic characterization of human normal articular chondrocytes. Osteoarthr Cartil 14:507–518. doi:10.1016/j.joca.2005.12.004 Ruiz-Romero C, Calamia V, Mateos J et al (2009) Mitochondrial dysregulation of osteoarthritic human articular chondrocytes analyzed by proteomics: a decrease in mitochondrial superoxide dismutase points to a redox imbalance. Mol Cell Proteom 8:172–189. doi:10.1074/mcp.M800292-MCP200 Sacitharan PK, Snelling SJB, Edwards JR (2012) Ageing mechanisms in arthritic disease. Discov Med 14:345–352 Sah R, Chen AC, Grodzinsky AJ, Trippel S (1994) Differential effect of bFGF and IGF-I on matrix metabolism in calf and adult bovine cartilage explants. Arch Biochem Biophys 308:137–147 Saklatvala J (1981) Characterization of catabolin, the major product of pig synovial tissue that induces resorption of cartilage proteoglycan in vitro. Biochem J 199:705–714 Saklatvala J (1986) Tumour necrosis factor alpha stimulates resorption and inhibits synthesis of proteoglycan in cartilage. Nature 322:547–549. doi:10.1038/322547a0 Salminen A, Kaarniranta K (2012) AMP-activated protein kinase (AMPK) controls the ageing process via an integrated signaling network. Ageing Res Rev 11:230–241. doi:10.1016/j.arr.2011.12.005 Salmon WD Jr, Daughaday W (1957) A hormonally controlled serum factor which stimulates sulfate incorporation by cartilage in vitro. J Lab Clin Med 49:825–836 Scanzello CR, Goldring SR (2012) The role of synovitis in osteoarthritis pathogenesis. Bone 51:249–257. doi:10.1016/j.bone.2012.02.012 Takada K, Hirose J, Senba K et al (2011) Enhanced apoptotic and reduced protective response in chondrocytes following endoplasmic reticulum stress in osteoarthritic cartilage. Int J Exp Pathol 92:232–242. doi:10.1111/j.1365-2613.2010.00758.x Takayama K, Ishida K, Matsushita T et al (2009) SIRT1 regulation of apoptosis of human chondrocytes. Arthritis Rheum 60:2731–2740. doi:10.1002/art.24864 Terkeltaub R, Yang B, Lotz M, Liu-Bryan R (2011) Chondrocyte AMP-activated protein kinase activity suppresses matrix degradation responses to proinflammatory cytokines interleukin-1β and tumor necrosis factor α. Arthritis Rheum 63:1928–1937. doi:10.1002/art.30333 Tsukazaki T, Matsumoto T, Enomoto H, Usa T, Ohtsuru A, Namba H, Iwasaki KYS (1994) Growth hormone directly and indirectly stimulates articular chondrocyte cell growth. Osteoarthr Cartil 2:259–267 Uehara Y, Hirose J, Yamabe S et al (2014) Endoplasmic reticulum stress-induced apoptosis contributes to articular cartilage degeneration via C/EBP homologous protein. Osteoarthr Cartil 22:1007–1017. doi:10.1016/j.joca.2014.04.025 van Heemst D (2010) Insulin, IGF-1 and longevity. Ageing Dis 1:147–157 Vasheghani F, Monemdjou R, Fahmi H et al (2013) Short communication: adult cartilage-specific peroxisome proliferator e activated receptor gamma knockout mice exhibit the spontaneous osteoarthritis phenotype. Am J Pathol 182:1099–1106. doi:10.1016/j.ajpath.2012.12.012 Vasheghani F, Zhang Y, Li Y et al (2015) PPAR γ deficiency results in severe, accelerated osteoarthritis associated with aberrant mTOR signalling in the articular cartilage. Ann Rheum Dis. doi:10.1136/annrheumdis-2014-205743 Verdin E (2014) The many faces of sirtuins: coupling of NAD metabolism, sirtuins and lifespan. Nat Med 20:25–27. doi:10.1038/nm.3447 Vincent TL, Watt FE (2014) Osteoarthritis. Medicine (Baltimore) 42:213–219. doi:10.1016/j.mpmed.2014.01.010 Wieland HA, Michaelis M, Kirschbaum BJ, Rudolphi KA (2005) Osteoarthritis—an untreatable disease? Nat Rev Drug Discov 4:331–344. doi:10.1038/nrd1693 Woolf AD, Pfleger B (2003) Burden of major musculoskeletal conditions. Bull World Health Organ 81:646–656. doi:10.1590/S0042-96862003000900007 Wu Y, Chen L, Wang Y et al (2015) Overexpression of Sirtuin 6 suppresses cellular senescence and NF-κB mediated inflammatory responses in osteoarthritis development. Sci Rep 5:17602. doi:10.1038/srep17602 Zhang Y, Vasheghani F, Li Y-H et al (2014) Cartilage-specific deletion of mTOR upregulates autophagy and protects mice from osteoarthritis. Ann Rheum Dis 1–9:1432–1440. doi:10.1136/annrheumdis-2013-204599