Biểu hiện cụ thể theo loại tế bào và sự khác biệt của RNA không mã hóa dài LINC-RSAS giảm trong tinh hoàn trong quá trình lão hóa của chuột

Biogerontology - Trang 1-24 - 2024
Ajay Kumar Danga1, Sukhleen Kour1,2, Anita Kumari1, Pramod C. Rath1
1Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
2Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, USA

Tóm tắt

RNA không mã hóa dài (lncRNAs) đã nổi lên như những chất điều tiết chính của biểu hiện gen, cấu trúc nhiễm sắc, các thay đổi di truyền, xử lý sau phiên mã của RNA, dịch mã mRNA thành protein, cũng như đóng góp vào quá trình lão hóa. Lão hóa là sự thay đổi chậm, tiến triển và phổ quát trong hầu hết các quá trình sinh lý của sinh vật sau khi đạt được sự trưởng thành sinh sản, thường liên quan đến các bệnh liên quan đến tuổi tác. Tinh hoàn của động vật có vú chứa nhiều loại tế bào khác nhau, là kho chứa sự phức tạp của bản sao, sản xuất giao tử nam đơn bội cho sinh sản và testosterone cho sự phát triển và duy trì các đặc điểm sinh dục nam, cũng như đóng góp vào sự biến đổi di truyền của loài. Chúng tôi báo cáo sự giảm biểu hiện và vị trí tế bào của RNA Long intergenic noncoding repeat-rich sense-antisense (LINC-RSAS) có liên quan đến tuổi tác trong tinh hoàn và các loại tế bào chính như tinh bào sơ cấp, tế bào Leydig và tế bào Sertoli trong quá trình lão hóa của chuột. Biểu hiện LINC-RSAS trong tinh hoàn tăng từ giai đoạn chưa trưởng thành (4 tuần) đến giai đoạn trưởng thành (16 và 44 tuần) và giảm từ giai đoạn trưởng thành (44 tuần) đến gần tuổi già (70 tuần). Sự metyl hóa DNA gen trong tinh hoàn cho thấy mô hình tương tự. Biểu hiện LINC-RSAS cao hơn cụ thể theo loại tế bào được quan sát thấy ở tinh bào sơ cấp (các tế bào pachytene), tế bào Leydig và tế bào Sertoli của tinh hoàn chuột trưởng thành. Việc quá biểu hiện LINC-RSAS trong các dòng tế bào người nuôi cấy cho thấy vai trò khả thi của nó trong việc kiểm soát chu kỳ tế bào và chết tế bào. Chúng tôi đề xuất rằng biểu hiện LINC-RSAS có liên quan đến sinh lý phân tử của tinh bào sơ cấp, tế bào Leydig và tế bào Sertoli trong tinh hoàn trưởng thành và sự giảm sút của nó có liên quan đến sự suy giảm chức năng của tinh hoàn trong quá trình lão hóa của chuột.

Từ khóa

#Long noncoding RNAs #LINC-RSAS #tế bào Leydig #tế bào Sertoli #lão hóa #tinh hoàn #di truyền học

Tài liệu tham khảo

Ajmal MR (2023) Protein misfolding and aggregation in proteinopathies: causes mechanism and cellular response. Diseases 11:30. https://doi.org/10.3390/diseases11010030 Ali T, Grote P (2020) Beyond the RNA-dependent function of LncRNA genes. elife 9:e60583. https://doi.org/10.7554/eLife.60583 Al-Turki TM, Griffith JD (2023) Mammalian telomeric RNA (TERRA) can be translated to produce valine-arginine and glycine-leucine dipeptide repeat proteins. Proc Natl Acad Sci USA 120:e2221529120. https://doi.org/10.1073/pnas.2221529120 Amin N, McGrath A, Chen Y-PP (2019) Evaluation of deep learning in non-coding RNA classification. Nat Mach Intell 1:246–256. https://doi.org/10.1038/s42256-019-0051-2 Andric SA, Kostic TS (2019) Regulation of Leydig cell steroidogenesis: intriguing network of signaling pathways and mitochondrial signalosome. Curr Opin Endocr Metab Res 6:7–20. https://doi.org/10.1016/j.coemr.2019.03.001 Balas MM, Hartwick EW, Barrington C et al (2021) Establishing RNA-RNA interactions remodels lncRNA structure and promotes PRC2 activity. Sci Adv 7:eabc9191. https://doi.org/10.1126/sciadv.abc9191 Barchi M, Bielli P, Dolci S et al (2021) Non-coding RNAs and splicing activity in testicular germ cell tumors. Life 11:736. https://doi.org/10.3390/life11080736 Barisciano G, Colangelo T, Rosato V et al (2020) miR-27a is a master regulator of metabolic reprogramming and chemoresistance in colorectal cancer. Br J Cancer 122:1354–1366. https://doi.org/10.1038/s41416-020-0773-2 Bresesti C, Vezzoli V, Cangiano B, Bonomi M (2021) Long Non-coding RNAs: role in testicular cancers. Front Oncol 11:605606. https://doi.org/10.3389/fonc.2021.605606 Bridges MC, Daulagala AC, Kourtidis A (2021) LNCcation: lncRNA localization and function. J Cell Biol 220:e202009045. https://doi.org/10.1083/jcb.202009045 Barbagallo F, Condorelli RA, Mongioì LM, et al (2020) Effects of bisphenols on testicular steroidogenesis. Front Endocrinol 11:373. https://doi.org/10.3389/fendo.2020.00373 Cao M, Shao X, Chan P et al (2020) High-resolution analyses of human sperm dynamic methylome reveal thousands of novel age-related epigenetic alterations. Clin Epigenet 12:192. https://doi.org/10.1186/s13148-020-00988-1 Carlevaro-Fita J, Johnson R (2019) Global positioning system: understanding long noncoding RNAs through subcellular localization. Mol Cell 73:869–883. https://doi.org/10.1016/j.molcel.2019.02.008 Cavalcante GC, Magalhães L, Ribeiro-dos-Santos Â, Vidal AF (2020) Mitochondrial epigenetics: non-coding RNAs as a novel layer of complexity. Int J Mol Sci 21:1838. https://doi.org/10.3390/ijms21051838 Chang Y-F, Lee-Chang JS, Panneerdoss S et al (2011) Isolation of Sertoli, Leydig, and spermatogenic cells from the mouse testis. Biotechniques 51:341–344. https://doi.org/10.2144/000113764 Chao Y, Jiang Y, Zhong M et al (2021) Regulatory roles and mechanisms of alternative RNA splicing in adipogenesis and human metabolic health. Cell Biosci 11:66. https://doi.org/10.1186/s13578-021-00581-w Choi S-W, Kim H-W, Nam J-W (2019) The small peptide world in long noncoding RNAs. Brief Bioinform 20:1853–1864. https://doi.org/10.1093/bib/bby055 Colnaghi M, Lane N, Pomiankowski A (2020) Genome expansion in early eukaryotes drove the transition from lateral gene transfer to meiotic sex. eLife 9:e58873. https://doi.org/10.7554/eLife.58873 Costa J, Braga PC, Rebelo I, et al (2023) Mitochondria quality control and male fertility. Biology 12:827. https://doi.org/10.3390/biology12060827 Cox KH, DeLeon DV, Angerer LM, Angerer RC (1984) Detection of mRNAs in sea urchin embryos by in situ hybridization using asymmetric RNA probes. Dev Biol 101:485–502. https://doi.org/10.1016/0012-1606(84)90162-3 Crick F (1970) Central dogma of molecular biology. Nature 227:561–563. https://doi.org/10.1038/227561a0 Da Ros M, Lehtiniemi T, Olotu O et al (2019) Enrichment of pachytene spermatocytes and spermatids from mouse testes using standard laboratory equipment. J Vis Exp 151:e60271. https://doi.org/10.3791/60271 Dey I, Rath PC (2005) A novel rat genomic simple repeat DNA with RNA-homology shows triplex (H-DNA)-like structure and tissue-specific RNA expression. Biochem Biophys Res Commun 327:276–286. https://doi.org/10.1016/j.bbrc.2004.12.015 Dhuri K, Bechtold C, Quijano E et al (2020) Antisense oligonucleotides: an emerging area in drug discovery and development. J Clin Med 9:2004. https://doi.org/10.3390/jcm9062004 Dong S, Chen C, Zhang J, et al (2022) Testicular aging, male fertility and beyond. Front Endocrinol (Lausanne) 13:1012119. https://doi.org/10.3389/fendo.2022.1012119 _DIG Application Manual for Filter Hybridization.indb Dykes IM, Emanueli C (2017) Transcriptional and post-transcriptional gene regulation by long non-coding RNA. Genomics Proteomics Bioinform 15:177–186. https://doi.org/10.1016/j.gpb.2016.12.005 Fazal FM, Han S, Parker KR et al (2019) Atlas of subcellular RNA localization revealed by APEX-seq. Cell 178:473-490.e26. https://doi.org/10.1016/j.cell.2019.05.027 Fischer AH, Jacobson KA, Rose J, Zeller R (2008) Hematoxylin and eosin staining of tissue and cell sections. CSH Protoc. https://doi.org/10.1101/pdb.prot4986 Guo J, Huang X, Dou L et al (2022) Aging and aging-related diseases: from molecular mechanisms to interventions and treatments. Sig Transduct Target Ther 7:1–40. https://doi.org/10.1038/s41392-022-01251-0 Han G, Hong S-H, Lee S-J et al (2021) Transcriptome analysis of testicular aging in mice. Cells 10:2895. https://doi.org/10.3390/cells10112895 Haga M, Okada M (2022) Systems approaches to investigate the role of NF-κB signaling in aging. Biochem HJ 479:161–183. https://doi.org/10.1042/BCJ20210547 Hintze JL, Nelson RD (1998) Violin plots: a box plot-density trace synergism. Am Stat 52:181–184. https://doi.org/10.1080/00031305.1998.10480559 Hong SH, Kwon JT, Kim J et al (2018) Profiling of testis-specific long noncoding RNAs in mice. BMC Genomics 19:539. https://doi.org/10.1186/s12864-018-4931-3 Huang D, Zuo Y, Zhang C et al (2022a) A single-nucleus transcriptomic atlas of primate testicular aging reveals exhaustion of the spermatogonial stem cell reservoir and loss of Sertoli cell homeostasis. Protein Cell 14(12):888. https://doi.org/10.1093/procel/pwac057 Huang W, Hickson LJ, Eirin A et al (2022b) Cellular senescence: the good, the bad and the unknown. Nat Rev Nephrol 18:611–627. https://doi.org/10.1038/s41581-022-00601-z Ille AM, Lamont H, Mathews MB (2022) The Central Dogma revisited: insights from protein synthesis, CRISPR, and beyond. Wires RNA 13:e1718. https://doi.org/10.1002/wrna.1718 Jeremy M, Gurusubramanian G, Roy VK (2019) Vitamin D3 regulates apoptosis and proliferation in the testis of Dgalactose-induced aged rat model. Sci Rep 9:14103. https://doi.org/10.1038/s41598-019-50679-y Jiang B, Yuan C, Han J et al (2021) miR-143-3p inhibits the differentiation of osteoclast induced by synovial fibroblast and monocyte coculture in adjuvant-induced arthritic rats. Biomed Res Int 2021:5565973. https://doi.org/10.1155/2021/5565973 Jo H, Shim K, Jeoung D (2023) The potential of senescence as a target for developing anticancer therapy. Int J Mol Sci 24:3436. https://doi.org/10.3390/ijms24043436 Kang Y-J, Yang D-C, Kong L et al (2017) CPC2: a fast and accurate coding potential calculator based on sequence intrinsic features. Nucleic Acids Res 45:W12–W16. https://doi.org/10.1093/nar/gkx428 Kour S, Rath PC (2015) Age-dependent differential expression profile of a novel intergenic long noncoding RNA in rat brain. Int J Dev Neurosci 47:286–297. https://doi.org/10.1016/j.ijdevneu.2015.08.008 Kour S, Rath PC (2016) Long noncoding RNAs in aging and age-related diseases. Ageing Res Rev 26:1–21. https://doi.org/10.1016/j.arr.2015.12.001 Kour S, Rath PC (2017) Age-related expression of a repeat-rich intergenic long noncoding RNA in the rat brain. Mol Neurobiol 54:639–660. https://doi.org/10.1007/s12035-015-9634-z Kozomara A, Birgaoanu M, Griffiths-Jones S (2019) miRBase: from microRNA sequences to function. Nucleic Acids Res 47:D155–D162. https://doi.org/10.1093/nar/gky1141 Landfors M, Johansen J, Aronsen JM et al (2017) Genome-wide profiling of DNA 5-hydroxymethylcytosine during rat Sertoli cell maturation. Cell Discov 3:1–14. https://doi.org/10.1038/celldisc.2017.13 Lee H, Zhang Z, Krause HM (2019) Long noncoding RNAs and repetitive elements: junk or intimate evolutionary partners? Trends Genet 35:892–902. https://doi.org/10.1016/j.tig.2019.09.006 Li X, Xu M, Ding L, Tang J (2019) MiR-27a: a novel biomarker and potential therapeutic target in tumors. J Cancer 10:2836–2848. https://doi.org/10.7150/jca.31361 Li X, Li C, Zhang W et al (2023) Inflammation and aging: signaling pathways and intervention therapies. Signal Transduct Target Ther 8:239. https://doi.org/10.1038/s41392-023-01502-8 Liao J, Suen HC, Luk ACS et al (2021) Transcriptomic and epigenomic profiling of young and aged spermatogonial stem cells reveals molecular targets regulating differentiation. PLoS Genet 17:e1009369. https://doi.org/10.1371/journal.pgen.1009369 López-Otín C, Blasco MA, Partridge L et al (2023) Hallmarks of aging: an expanding universe. Cell 186:243–278. https://doi.org/10.1016/j.cell.2022.11.001 Ma S, Zhang Y (2020) Profiling chromatin regulatory landscape: insights into the development of ChIP-seq and ATAC-seq. Mol Biomed 1:9. https://doi.org/10.1186/s43556-020-00009-w Marttila S, Chatsirisupachai K, Palmer D, de Magalhães JP (2020) Ageing-associated changes in the expression of lncRNAs in human tissues reflect a transcriptional modulation in ageing pathways. Mech Ageing Dev 185:111177. https://doi.org/10.1016/j.mad.2019.111177 Matos B, Publicover SJ, Castro LFC, Esteves PJ, Fardilha M (2021) Brain and testis: more alike than previously thought? Open Biol 11(6):200322. https://doi.org/10.1098/rsob.200322 Mattick JS, Amaral PP, Carninci P et al (2023) Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat Rev Mol Cell Biol 24(6):430–447. https://doi.org/10.1038/s41580-022-00566-8 Matzkin ME, Calandra RS, Rossi SP et al (2021) Hallmarks of testicular aging: the challenge of anti-inflammatory and antioxidant therapies using natural and/or pharmacological compounds to improve the physiopathological status of the aged male gonad. Cells 10:3114. https://doi.org/10.3390/cells10113114 Mishra RR, Chaudhary JK, Bajaj GD, Rath PC (2011) A novel human TPIP splice-variant (TPIP-C2) mRNA, expressed in human and mouse tissues, strongly inhibits cell growth in HeLa cells. PLoS ONE 6:e28433. https://doi.org/10.1371/journal.pone.0028433 Mishra RR, Chaudhary JK, Rath PC (2012) Cell cycle arrest and apoptosis by expression of a novel TPIP (TPIP-C2) cDNA encoding a C2-domain in HEK-293 cells. Mol Biol Rep 39:7389–7402. https://doi.org/10.1007/s11033-012-1571-6 Moore JE, Purcaro MJ, Pratt HE et al (2020) Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature 583:699–710. https://doi.org/10.1038/s41586-020-2493-4 Morgan M, Kumar L, Li Y, Baptissart M (2021) Post-transcriptional regulation in spermatogenesis: all RNA pathways lead to healthy sperm. Cell Mol Life Sci 78:8049–8071. https://doi.org/10.1007/s00018-021-04012-4 Nie X, Munyoki SK, Sukhwani M, et al (2022) Single-cell analysis of human testis aging and correlation with elevated body mass index. Dev Cell 57:1160–1176.e5. https://doi.org/10.1016/j.devcel.2022.04.004 Nojima T, Proudfoot NJ (2022) Mechanisms of lncRNA biogenesis as revealed by nascent transcriptomics. Nat Rev Mol Cell Biol 23:389–406. https://doi.org/10.1038/s41580-021-00447-6 Payer B, Rosenberg M, Yamaji M et al (2013) Tsix RNA and the germline factor, PRDM14, link X reactivation and stem cell reprogramming. Mol Cell 52:805–818. https://doi.org/10.1016/j.molcel.2013.10.023 Ponting CP, Haerty W (2022) Genome-wide analysis of human long noncoding RNAs: a provocative review. Annu Rev Genomics Hum Genet 23:153–172. https://doi.org/10.1146/annurev-genom-112921-123710 Rao X, Huang X, Zhou Z, Lin X (2013) An improvement of the 2ˆ(–delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostat Bioinform Biomath 3:71–85 Rattan SI (2007) Homeostasis, homeodynamics, and aging. Encyclopedia of gerontology, 2nd edn. Elsevier, Amsterdam, pp 696–699 Rattan SIS (2008) Hormesis in aging. Ageing Res Rev 7:63–78. https://doi.org/10.1016/j.arr.2007.03.002 Reddy PM, Reddy PR (1990) Differential regulation of DNA methylation in rat testis and its regulation by gonadotropic hormones. J Steroid Biochem 35:173–178. https://doi.org/10.1016/0022-4731(90)90271-s Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. CSHL Press Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Molecular cloning: a laboratory manual Singh DK, Rath PC (2012) Long interspersed nuclear elements (LINEs) show tissue-specific, mosaic genome and methylation-unrestricted, widespread expression of noncoding RNAs in somatic tissues of the rat. RNA Biol 9:1380–1396. https://doi.org/10.4161/rna.22402 Soumillon M, Necsulea A, Weier M et al (2013) Cellular source and mechanisms of high transcriptome complexity in the mammalian testis. Cell Rep 3:2179–2190. https://doi.org/10.1016/j.celrep.2013.05.031 Sparber P, Filatova A, Khantemirova M, Skoblov M (2019) The role of long non-coding RNAs in the pathogenesis of hereditary diseases. BMC Med Genomics 12(2):63–78. https://doi.org/10.1186/s12920-019-0487-6 Statello L, Guo C-J, Chen L-L, Huarte M (2021) Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol 22:96–118. https://doi.org/10.1038/s41580-020-00315-9 Stöckl JB, Schmid N, Flenkenthaler F, et al (2021) Age-related alterations in the testicular proteome of a non-human primate. Cells 10:1306. https://doi.org/10.3390/cells10061306 Su Y, Wu H, Pavlosky A et al (2016) Regulatory non-coding RNA: new instruments in the orchestration of cell death. Cell Death Dis 7:e2333–e2333. https://doi.org/10.1038/cddis.2016.210 Talross GJS, Carlson JR (2023) The rich non-coding RNA landscape of the Drosophila antenna. Cell Rep 42:112482. https://doi.org/10.1016/j.celrep.2023.112482 Titus-McQuillan JE, Nanni AV, McIntyre LM, Rogers RL (2023) Estimating transcriptome complexities across eukaryotes. BMC Genomics 24:254. https://doi.org/10.1186/s12864-023-09326-0 Wang Y, Chen F, Ye L, et al (2017) Steroidogenesis in leydig cells: effects of aging and environmental factors. Reproduction 154:R111–R122. https://doi.org/10.1530/REP-17-0064 Wang K, Liu H, Hu Q et al (2022) Epigenetic regulation of aging: implications for interventions of aging and diseases. Sig Transduct Target Ther 7:1–22. https://doi.org/10.1038/s41392-022-01211-8 XLSTAT | Statistical Software for Excel. In: XLSTAT, Your data analysis solution. https://www.xlstat.com/en/. Yao B, Kang Y, An K et al (2023) Comparative analysis of microRNA and messengerRNA expression profiles in plateau zokor testicular cells under reproductive suppression. Front Vet Sci 10:1184120. https://doi.org/10.3389/fvets.2023.1184120 Zheng M, Xiao S, Guo T et al (2020) DNA methylomic homogeneity and heterogeneity in muscles and testes throughout pig adulthood. Aging 12:25412–25431. https://doi.org/10.18632/aging.104143 Zirkin BR, Papadopoulos V (2018) Leydig cells: formation, function, and regulation. Biol Reprod 99:101–111. https://doi.org/10.1093/biolre/ioy059