Cell penetrating peptide-modified poly(lactic-co-glycolic acid) nanoparticles with enhanced cell internalization

Acta Biomaterialia - Tập 30 - Trang 49-61 - 2016
Jill M. Steinbach1, Young-Eun Seo1, W. Mark Saltzman1
1Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA

Tài liệu tham khảo

Cheng, 2011, Enhanced siRNA delivery into cells by exploiting the synergy between targeting ligands and cell-penetrating peptides, Biomaterials, 32, 6194, 10.1016/j.biomaterials.2011.04.053 Gao, 2010, Progress in siRNA delivery using multifunctional nanoparticles, Methods Mol. Biol., 629, 53, 10.1007/978-1-60761-657-3_4 Steinbach, 2012, Polymer nanoparticles encapsulating siRNA for treatment of HSV-2 genital infection, J. Controlled Release, 162, 102, 10.1016/j.jconrel.2012.06.008 Woodrow, 2009, Intravaginal gene silencing using biodegradable polymer nanoparticles densely loaded with small-interfering RNA, Nat. Mater., 8, 526, 10.1038/nmat2444 Kobsa, 2008, Bioengineering approaches to controlled protein delivery, Pediatr. Res., 63, 513, 10.1203/PDR.0b013e318165f14d Pagels, 2015, Polymeric nanoparticles and microparticles for the delivery of peptides, biologics, and soluble therapeutics, J. Controlled Release, 219, 519, 10.1016/j.jconrel.2015.09.001 Skalko-Basnet, 2014, Biologics: the role of delivery systems in improved therapy, Biologics, 8, 107 Steinbach, 2015, Protein and oligonucleotide delivery systems for vaginal microbicides against viral STIs, Cell. Mol. Life Sci., 72, 469, 10.1007/s00018-014-1756-3 Singh, 2014 Danhier, 2012, PLGA-based nanoparticles: an overview of biomedical applications, J. Controlled Release, 161, 505, 10.1016/j.jconrel.2012.01.043 Dinarvand, 2011, Polylactide-co-glycolide nanoparticles for controlled delivery of anticancer agents, Int. J. Nanomed., 6, 877, 10.2147/IJN.S18905 Cheng, 2012, Nanomedicine: downsizing tumour therapeutics, Nat. Nanotechnol., 7, 346, 10.1038/nnano.2012.89 Cheng, 2015, A holistic approach to targeting disease with polymeric nanoparticles, Nat. Rev. Drug Discovery, 14, 239, 10.1038/nrd4503 Bala, 2004, PLGA nanoparticles in drug delivery: the state of the art, Crit. Rev. Ther. Drug Carrier Syst., 21, 387, 10.1615/CritRevTherDrugCarrierSyst.v21.i5.20 Brannon-Peppas, 1995, Recent advances on the use of biodegradable microparticles and nanoparticles in controlled drug delivery, Int. J. Pharm., 116, 1, 10.1016/0378-5173(94)00324-X Makadia, 2011, Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier, Polymers, 3, 1377, 10.3390/polym3031377 Shive, 1997, Biodegradation and biocompatibility of PLA and PLGA microspheres, Adv. Drug Delivery Rev., 28, 5, 10.1016/S0169-409X(97)00048-3 Saltzman, 2001 Schliecker, 2003, Characterization of a homologous series of D, L-lactic acid oligomers; a mechanistic study on the degradation kinetics in vitro, Biomaterials, 24, 3835, 10.1016/S0142-9612(03)00243-6 Park, 1994, Degradation of poly(D, L-lactic acid) microspheres – Effect of molecular-weight, J. Controlled Release, 30, 161, 10.1016/0168-3659(94)90263-1 Gilding, 1979, Biodegradable polymers for use in surgery – polyglycolic/poly (lactic acid) homo- and copolymers: 1, Polymer, 20, 1459, 10.1016/0032-3861(79)90009-0 2002 Martin, 2014, Surface-modified nanoparticles enhance transurothelial penetration and delivery of survivin siRNA in treating bladder cancer, Mol. Cancer Ther., 13, 71, 10.1158/1535-7163.MCT-13-0502 Torchilin, 2008, Cell penetrating peptide-modified pharmaceutical nanocarriers for intracellular drug and gene delivery, Biopolymers, 90, 604, 10.1002/bip.20989 Williford, 2014, Recent advances in nanoparticle-mediated siRNA delivery, Annu. Rev. Biomed. Eng., 16, 347, 10.1146/annurev-bioeng-071813-105119 Gavrilov, 2012, Therapeutic siRNA: principles, challenges, and strategies, Yale J Biol. Med., 85, 187 Kanasty, 2013, Delivery materials for siRNA therapeutics, Nat. Mater., 12, 967, 10.1038/nmat3765 Hillaireau, 2009, Nanocarriers’ entry into the cell: relevance to drug delivery, Cell. Mol. Life Sci., 66, 2873, 10.1007/s00018-009-0053-z Khalil, 2006, Uptake pathways and subsequent intracellular trafficking in nonviral gene delivery, Pharmacol. Rev., 58, 32, 10.1124/pr.58.1.8 Hocherl, 2012, Competitive cellular uptake of nanoparticles made from polystyrene, poly(methyl methacrylate), and polylactide, Macromol. Biosci., 12, 454, 10.1002/mabi.201100337 Iversen, 2011, Endocytosis and intracellular transport of nanoparticles: present knowledge and need for future studies, Nano Today, 6, 176, 10.1016/j.nantod.2011.02.003 Vacha, 2011, Receptor-mediated endocytosis of nanoparticles of various shapes, Nano Lett., 11, 5391, 10.1021/nl2030213 Harush-Frenkel, 2008, Surface charge of nanoparticles determines their endocytic and transcytotic pathway in polarized MDCK cells, Biomacromolecules, 9, 435, 10.1021/bm700535p dos Santos, 2011, Quantitative assessment of the comparative nanoparticle-uptake efficiency of a range of cell lines, Small, 7, 3341, 10.1002/smll.201101076 Mussbach, 2011, Transduction of peptides and proteins into live cells by cell penetrating peptides, J. Cell. Biochem., 112, 3824, 10.1002/jcb.23313 Meade, 2007, Exogenous siRNA delivery using peptide transduction domains/cell penetrating peptides, Adv. Drug Delivery Rev., 59, 134, 10.1016/j.addr.2007.03.004 Meade, 2008, Enhancing the cellular uptake of siRNA duplexes following noncovalent packaging with protein transduction domain peptides, Adv. Drug Delivery Rev., 60, 530, 10.1016/j.addr.2007.10.004 Koren, 2012, Cell-penetrating peptides: breaking through to the other side, Trends Mol. Med., 18, 385, 10.1016/j.molmed.2012.04.012 Lehto, 2012, Cell-penetrating peptides for the delivery of nucleic acids, Expert Opin. Drug Deliv., 9, 823, 10.1517/17425247.2012.689285 Margus, 2012, Cell-penetrating peptides as versatile vehicles for oligonucleotide delivery, Mol. Ther., 20, 525, 10.1038/mt.2011.284 Morris, 2008, Cell-penetrating peptides: from molecular mechanisms to therapeutics, Biol. Cell, 100, 201, 10.1042/BC20070116 Erazo-Oliveras, 2012, Improving the endosomal escape of cell-penetrating peptides and their cargos: strategies and challenges, Pharmaceuticals, 5, 1177, 10.3390/ph5111177 Madani, 2011, Mechanisms of cellular uptake of cell-penetrating peptides, J. Biophys., 2011, 414729, 10.1155/2011/414729 Zaki, 2010, Gateways for the intracellular access of nanocarriers: a review of receptor-mediated endocytosis mechanisms and of strategies in receptor targeting, Expert Opin. Drug Deliv., 7, 895, 10.1517/17425247.2010.501792 Rydstrom, 2011, Direct translocation as major cellular uptake for CADY self-assembling peptide-based nanoparticles, PLoS One, 6, e25924, 10.1371/journal.pone.0025924 Wang, 2010, Delivery of siRNA therapeutics: barriers and carriers, AAPS J., 12, 492, 10.1208/s12248-010-9210-4 Chiu, 2004, Visualizing a correlation between siRNA localization, cellular uptake, and RNAi in living cells, Chem. Biol., 11, 1165, 10.1016/j.chembiol.2004.06.006 Katas, 2008, Effect of preparative variables on small interfering RNA loaded Poly(D, L-lactide-co-glycolide)-chitosan submicron particles prepared by emulsification diffusion method, J. Microencapsulation, 25, 541, 10.1080/02652040802075567 Nafee, 2007, Chitosan-coated PLGA nanoparticles for DNA/RNA delivery: effect of the formulation parameters on complexation and transfection of antisense oligonucleotides, Nanomedicine, 3, 173, 10.1016/j.nano.2007.03.006 Zhou, 2012, Octa-functional PLGA nanoparticles for targeted and efficient siRNA delivery to tumors, Biomaterials, 33, 583, 10.1016/j.biomaterials.2011.09.061 Fahmy, 2005, Surface modification of biodegradable polyesters with fatty acid conjugates for improved drug targeting, Biomaterials, 26, 5727, 10.1016/j.biomaterials.2005.02.025 Cheng, 2015, MicroRNA silencing for cancer therapy targeted to the tumour microenvironment, Nature, 518, 107, 10.1038/nature13905 Cu, 2011, In vivo distribution of surface-modified PLGA nanoparticles following intravaginal delivery, J. Controlled Release, 156, 258, 10.1016/j.jconrel.2011.06.036 Cu, 2010, Ligand-modified gene carriers increased uptake in target cells but reduced DNA release and transfection efficiency, Nanomedicine, 6, 334, 10.1016/j.nano.2009.09.001 Cu, 2009, Controlled surface modification with poly(ethylene)glycol enhances diffusion of PLGA nanoparticles in human cervical mucus, Mol. Pharm., 6, 173, 10.1021/mp8001254 Park, 2009, PEGylated PLGA nanoparticles for the improved delivery of doxorubicin, Nanomedicine, 5, 410, 10.1016/j.nano.2009.02.002 Park, 2011, Enhancement of surface ligand display on PLGA nanoparticles with amphiphilic ligand conjugates, J. Controlled Release, 156, 109, 10.1016/j.jconrel.2011.06.025 Console, 2003, Antennapedia and HIV transactivator of transcription (TAT) “protein transduction domains” promote endocytosis of high molecular weight cargo upon binding to cell surface glycosaminoglycans, J. Biol. Chem., 278, 35109, 10.1074/jbc.M301726200 Lundberg, 2007, Delivery of short interfering RNA using endosomolytic cell-penetrating peptides, FASEB J., 21, 2664, 10.1096/fj.06-6502com Simeoni, 2003, Insight into the mechanism of the peptide-based gene delivery system MPG: implications for delivery of siRNA into mammalian cells, Nucleic Acids Res., 31, 2717, 10.1093/nar/gkg385 Fahmy, 2005, Surface modification of biodegradable polyesters with fatty acid conjugates for improved drug targeting, Biomaterials, 26, 5727, 10.1016/j.biomaterials.2005.02.025 Benfer, 2012, Cellular uptake mechanism and knockdown activity of siRNA-loaded biodegradable DEAPA-PVA-g-PLGA nanoparticles, Eur. J. Pharm. Biopharm., 80, 247, 10.1016/j.ejpb.2011.10.021 dos Santos, 2011, Effects of transport inhibitors on the cellular uptake of carboxylated polystyrene nanoparticles in different cell lines, PLoS One, 6, e24438, 10.1371/journal.pone.0024438 Gotte, 2004, Biglycan is internalized via a chlorpromazine-sensitive route, Cell. Mol. Biol. Lett., 9, 475 Ivanov, 2008, Pharmacological inhibition of endocytic pathways: is it specific enough to be useful, 10.1007/978-1-59745-178-9_2 Chen, 2011, Cholesterol sequestration by nystatin enhances the uptake and activity of endostatin in endothelium via regulating distinct endocytic pathways, Blood, 117, 6392, 10.1182/blood-2010-12-322867 Qaddoumi, 2003, Clathrin and caveolin-1 expression in primary pigmented rabbit conjunctival epithelial cells: role in PLGA nanoparticle endocytosis, Mol. Vis., 9, 559 Gratton, 2008, The effect of particle design on cellular internalization pathways, Proc. Natl. Acad. Sci. U.S.A., 105, 11613, 10.1073/pnas.0801763105 Araki, 2003, Phosphoinositide-3-kinase-independent contractile activities associated with Fc gamma-receptor-mediated phagocytosis and macropinocytosis in macrophages, J. Cell Sci., 116, 247, 10.1242/jcs.00235 Araki, 1996, A role for phosphoinositide 3-kinase in the completion of macropinocytosis and phagocytosis by macrophages, J. Cell Biol., 135, 1249, 10.1083/jcb.135.5.1249 Kruth, 2005, Macropinocytosis is the endocytic pathway that mediates macrophage foam cell formation with native low density lipoprotein, J. Biol. Chem., 280, 2352, 10.1074/jbc.M407167200 Schmidt, 2009, Regulation of endosomal membrane traffic by a Gadkin/AP-1/kinesin KIF5 complex, Proc. Natl. Acad. Sci. U.S.A., 106, 15344, 10.1073/pnas.0904268106 Harush-Frenkel, 2007, Targeting of nanoparticles to the clathrin-mediated endocytic pathway, Biochem. Biophys. Res. Commun., 353, 26, 10.1016/j.bbrc.2006.11.135 Verma, 2010, Effect of surface properties on nanoparticle-cell interactions, Small, 6, 12, 10.1002/smll.200901158 Tassa, 2010, Binding affinity and kinetic analysis of targeted small molecule-modified nanoparticles, Bioconjugate Chem., 21, 14, 10.1021/bc900438a Kawamura, 2006, Probing the impact of valency on the routing of arginine-rich peptides into eukaryotic cells, Biochemistry, 45, 1116, 10.1021/bi051338e Xia, 2012, Penetratin-functionalized PEG-PLA nanoparticles for brain drug delivery, Int. J. Pharm., 436, 840, 10.1016/j.ijpharm.2012.07.029 Wang, 2014, Low-molecular-weight protamine-modified PLGA nanoparticles for overcoming drug-resistant breast cancer, J. Controlled Release, 192, 47, 10.1016/j.jconrel.2014.06.051 Liu, 2013, Oligoarginine-modified biodegradable nanoparticles improve the intestinal absorption of insulin, Int. J. Pharm., 448, 159, 10.1016/j.ijpharm.2013.03.033 Chen, 2012, Folic acid and cell-penetrating peptide conjugated PLGA-PEG bifunctional nanoparticles for vincristine sulfate delivery, Eur. J. Pharm. Sci., 47, 430, 10.1016/j.ejps.2012.07.002 Fields, 2012, Surface modified poly(beta amino ester)-containing nanoparticles for plasmid DNA delivery, J. Controlled Release, 164, 41, 10.1016/j.jconrel.2012.09.020 Verma, 2008, Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles, Nat. Mater., 7, 588, 10.1038/nmat2202 Moradi, 2012, Ligand density and clustering effects on endocytosis of folate modified nanoparticles, RSC Adv., 2, 3025, 10.1039/c2ra01168a Mishra, 2009, Cell-penetrating peptides and peptide nucleic acid-coupled MRI contrast agents: evaluation of cellular delivery and target binding, Bioconjugate Chem., 20, 1860, 10.1021/bc9000454 Deshayes, 2006, Interactions of amphipathic CPPs with model membranes, Biochim. Biophys. Acta, 1758, 328, 10.1016/j.bbamem.2005.10.004 Endoh, 2009, Cellular siRNA delivery using cell-penetrating peptides modified for endosomal escape, Adv. Drug Delivery Rev., 61, 704, 10.1016/j.addr.2009.04.005 Duchardt, 2007, A comprehensive model for the cellular uptake of cationic cell-penetrating peptides, Traffic, 8, 848, 10.1111/j.1600-0854.2007.00572.x Huh, 2003, PLGA-PEG block copolymers for drug formulations, Drug Dev. Delivery, 3, 5 Averineni, 2012, PLGA 50:50 nanoparticles of paclitaxel: development, in vitro anti-tumor activity in BT-549 cells and in vivo evaluation, Bull. Mater. Sci., 35, 319, 10.1007/s12034-012-0313-7 Marrache, 2013, Biodegradable synthetic high-density lipoprotein nanoparticles for atherosclerosis, Proc. Natl. Acad. Sci. U.S.A., 110, 9445, 10.1073/pnas.1301929110 Manoochehri, 2013, Surface modification of PLGA nanoparticles via human serum albumin conjugation for controlled delivery of docetaxel, Daru, 21, 58, 10.1186/2008-2231-21-58 Munro, 2004, Adsorption of lipid-functionalized poly(ethylene glycol) to gold surfaces as a cushion for polymer-supported lipid bilayers, Langmuir, 20, 3339, 10.1021/la036062v Li, 2006, Shape and aggregation control of nanoparticles: Not shaken, not stirred, J. Am. Chem. Soc., 128, 968, 10.1021/ja056609n Kumar, 2012, Drug-loaded PLGA nanoparticles for oral administration: fundamental issues and challenges ahead, Crit. Rev. Ther. Drug Carrier Syst., 29, 149, 10.1615/CritRevTherDrugCarrierSyst.v29.i2.20 Avgoustakis, 2004, Pegylated poly(lactide) and poly(lactide-co-glycolide) nanoparticles: preparation, properties and possible applications in drug delivery, Curr. Drug Delivery, 1, 321, 10.2174/1567201043334605 Aggarwal, 2009, Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy, Adv. Drug Delivery Rev., 61, 428, 10.1016/j.addr.2009.03.009 Hotze, 2010, Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment, J. Environ. Qual., 39, 1909, 10.2134/jeq2009.0462 Lundqvist, 2008, Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts, Proc. Natl. Acad. Sci. U.S.A., 105, 14265, 10.1073/pnas.0805135105 Xiang, 2013, Experimental and statistical analysis of surface charge, aggregation and adsorption behaviors of surface-functionalized titanium dioxide nanoparticles in aquatic system, J. Nanoparticle Res., 15, 1293, 10.1007/s11051-012-1293-7 Werth, 2003, Agglomeration of charged nanopowders in suspensions, Powder Technol., 133, 106, 10.1016/S0032-5910(03)00096-2 Werth, 2002, Agglomeration in charged suspensions, Comput. Phys. Commun., 147, 259, 10.1016/S0010-4655(02)00285-0 Bagwe, 2006, Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding, Langmuir, 22, 4357, 10.1021/la052797j