Cell penetrating peptide-modified poly(lactic-co-glycolic acid) nanoparticles with enhanced cell internalization
Tài liệu tham khảo
Cheng, 2011, Enhanced siRNA delivery into cells by exploiting the synergy between targeting ligands and cell-penetrating peptides, Biomaterials, 32, 6194, 10.1016/j.biomaterials.2011.04.053
Gao, 2010, Progress in siRNA delivery using multifunctional nanoparticles, Methods Mol. Biol., 629, 53, 10.1007/978-1-60761-657-3_4
Steinbach, 2012, Polymer nanoparticles encapsulating siRNA for treatment of HSV-2 genital infection, J. Controlled Release, 162, 102, 10.1016/j.jconrel.2012.06.008
Woodrow, 2009, Intravaginal gene silencing using biodegradable polymer nanoparticles densely loaded with small-interfering RNA, Nat. Mater., 8, 526, 10.1038/nmat2444
Kobsa, 2008, Bioengineering approaches to controlled protein delivery, Pediatr. Res., 63, 513, 10.1203/PDR.0b013e318165f14d
Pagels, 2015, Polymeric nanoparticles and microparticles for the delivery of peptides, biologics, and soluble therapeutics, J. Controlled Release, 219, 519, 10.1016/j.jconrel.2015.09.001
Skalko-Basnet, 2014, Biologics: the role of delivery systems in improved therapy, Biologics, 8, 107
Steinbach, 2015, Protein and oligonucleotide delivery systems for vaginal microbicides against viral STIs, Cell. Mol. Life Sci., 72, 469, 10.1007/s00018-014-1756-3
Singh, 2014
Danhier, 2012, PLGA-based nanoparticles: an overview of biomedical applications, J. Controlled Release, 161, 505, 10.1016/j.jconrel.2012.01.043
Dinarvand, 2011, Polylactide-co-glycolide nanoparticles for controlled delivery of anticancer agents, Int. J. Nanomed., 6, 877, 10.2147/IJN.S18905
Cheng, 2012, Nanomedicine: downsizing tumour therapeutics, Nat. Nanotechnol., 7, 346, 10.1038/nnano.2012.89
Cheng, 2015, A holistic approach to targeting disease with polymeric nanoparticles, Nat. Rev. Drug Discovery, 14, 239, 10.1038/nrd4503
Bala, 2004, PLGA nanoparticles in drug delivery: the state of the art, Crit. Rev. Ther. Drug Carrier Syst., 21, 387, 10.1615/CritRevTherDrugCarrierSyst.v21.i5.20
Brannon-Peppas, 1995, Recent advances on the use of biodegradable microparticles and nanoparticles in controlled drug delivery, Int. J. Pharm., 116, 1, 10.1016/0378-5173(94)00324-X
Makadia, 2011, Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier, Polymers, 3, 1377, 10.3390/polym3031377
Shive, 1997, Biodegradation and biocompatibility of PLA and PLGA microspheres, Adv. Drug Delivery Rev., 28, 5, 10.1016/S0169-409X(97)00048-3
Saltzman, 2001
Schliecker, 2003, Characterization of a homologous series of D, L-lactic acid oligomers; a mechanistic study on the degradation kinetics in vitro, Biomaterials, 24, 3835, 10.1016/S0142-9612(03)00243-6
Park, 1994, Degradation of poly(D, L-lactic acid) microspheres – Effect of molecular-weight, J. Controlled Release, 30, 161, 10.1016/0168-3659(94)90263-1
Gilding, 1979, Biodegradable polymers for use in surgery – polyglycolic/poly (lactic acid) homo- and copolymers: 1, Polymer, 20, 1459, 10.1016/0032-3861(79)90009-0
2002
Martin, 2014, Surface-modified nanoparticles enhance transurothelial penetration and delivery of survivin siRNA in treating bladder cancer, Mol. Cancer Ther., 13, 71, 10.1158/1535-7163.MCT-13-0502
Torchilin, 2008, Cell penetrating peptide-modified pharmaceutical nanocarriers for intracellular drug and gene delivery, Biopolymers, 90, 604, 10.1002/bip.20989
Williford, 2014, Recent advances in nanoparticle-mediated siRNA delivery, Annu. Rev. Biomed. Eng., 16, 347, 10.1146/annurev-bioeng-071813-105119
Gavrilov, 2012, Therapeutic siRNA: principles, challenges, and strategies, Yale J Biol. Med., 85, 187
Kanasty, 2013, Delivery materials for siRNA therapeutics, Nat. Mater., 12, 967, 10.1038/nmat3765
Hillaireau, 2009, Nanocarriers’ entry into the cell: relevance to drug delivery, Cell. Mol. Life Sci., 66, 2873, 10.1007/s00018-009-0053-z
Khalil, 2006, Uptake pathways and subsequent intracellular trafficking in nonviral gene delivery, Pharmacol. Rev., 58, 32, 10.1124/pr.58.1.8
Hocherl, 2012, Competitive cellular uptake of nanoparticles made from polystyrene, poly(methyl methacrylate), and polylactide, Macromol. Biosci., 12, 454, 10.1002/mabi.201100337
Iversen, 2011, Endocytosis and intracellular transport of nanoparticles: present knowledge and need for future studies, Nano Today, 6, 176, 10.1016/j.nantod.2011.02.003
Vacha, 2011, Receptor-mediated endocytosis of nanoparticles of various shapes, Nano Lett., 11, 5391, 10.1021/nl2030213
Harush-Frenkel, 2008, Surface charge of nanoparticles determines their endocytic and transcytotic pathway in polarized MDCK cells, Biomacromolecules, 9, 435, 10.1021/bm700535p
dos Santos, 2011, Quantitative assessment of the comparative nanoparticle-uptake efficiency of a range of cell lines, Small, 7, 3341, 10.1002/smll.201101076
Mussbach, 2011, Transduction of peptides and proteins into live cells by cell penetrating peptides, J. Cell. Biochem., 112, 3824, 10.1002/jcb.23313
Meade, 2007, Exogenous siRNA delivery using peptide transduction domains/cell penetrating peptides, Adv. Drug Delivery Rev., 59, 134, 10.1016/j.addr.2007.03.004
Meade, 2008, Enhancing the cellular uptake of siRNA duplexes following noncovalent packaging with protein transduction domain peptides, Adv. Drug Delivery Rev., 60, 530, 10.1016/j.addr.2007.10.004
Koren, 2012, Cell-penetrating peptides: breaking through to the other side, Trends Mol. Med., 18, 385, 10.1016/j.molmed.2012.04.012
Lehto, 2012, Cell-penetrating peptides for the delivery of nucleic acids, Expert Opin. Drug Deliv., 9, 823, 10.1517/17425247.2012.689285
Margus, 2012, Cell-penetrating peptides as versatile vehicles for oligonucleotide delivery, Mol. Ther., 20, 525, 10.1038/mt.2011.284
Morris, 2008, Cell-penetrating peptides: from molecular mechanisms to therapeutics, Biol. Cell, 100, 201, 10.1042/BC20070116
Erazo-Oliveras, 2012, Improving the endosomal escape of cell-penetrating peptides and their cargos: strategies and challenges, Pharmaceuticals, 5, 1177, 10.3390/ph5111177
Madani, 2011, Mechanisms of cellular uptake of cell-penetrating peptides, J. Biophys., 2011, 414729, 10.1155/2011/414729
Zaki, 2010, Gateways for the intracellular access of nanocarriers: a review of receptor-mediated endocytosis mechanisms and of strategies in receptor targeting, Expert Opin. Drug Deliv., 7, 895, 10.1517/17425247.2010.501792
Rydstrom, 2011, Direct translocation as major cellular uptake for CADY self-assembling peptide-based nanoparticles, PLoS One, 6, e25924, 10.1371/journal.pone.0025924
Wang, 2010, Delivery of siRNA therapeutics: barriers and carriers, AAPS J., 12, 492, 10.1208/s12248-010-9210-4
Chiu, 2004, Visualizing a correlation between siRNA localization, cellular uptake, and RNAi in living cells, Chem. Biol., 11, 1165, 10.1016/j.chembiol.2004.06.006
Katas, 2008, Effect of preparative variables on small interfering RNA loaded Poly(D, L-lactide-co-glycolide)-chitosan submicron particles prepared by emulsification diffusion method, J. Microencapsulation, 25, 541, 10.1080/02652040802075567
Nafee, 2007, Chitosan-coated PLGA nanoparticles for DNA/RNA delivery: effect of the formulation parameters on complexation and transfection of antisense oligonucleotides, Nanomedicine, 3, 173, 10.1016/j.nano.2007.03.006
Zhou, 2012, Octa-functional PLGA nanoparticles for targeted and efficient siRNA delivery to tumors, Biomaterials, 33, 583, 10.1016/j.biomaterials.2011.09.061
Fahmy, 2005, Surface modification of biodegradable polyesters with fatty acid conjugates for improved drug targeting, Biomaterials, 26, 5727, 10.1016/j.biomaterials.2005.02.025
Cheng, 2015, MicroRNA silencing for cancer therapy targeted to the tumour microenvironment, Nature, 518, 107, 10.1038/nature13905
Cu, 2011, In vivo distribution of surface-modified PLGA nanoparticles following intravaginal delivery, J. Controlled Release, 156, 258, 10.1016/j.jconrel.2011.06.036
Cu, 2010, Ligand-modified gene carriers increased uptake in target cells but reduced DNA release and transfection efficiency, Nanomedicine, 6, 334, 10.1016/j.nano.2009.09.001
Cu, 2009, Controlled surface modification with poly(ethylene)glycol enhances diffusion of PLGA nanoparticles in human cervical mucus, Mol. Pharm., 6, 173, 10.1021/mp8001254
Park, 2009, PEGylated PLGA nanoparticles for the improved delivery of doxorubicin, Nanomedicine, 5, 410, 10.1016/j.nano.2009.02.002
Park, 2011, Enhancement of surface ligand display on PLGA nanoparticles with amphiphilic ligand conjugates, J. Controlled Release, 156, 109, 10.1016/j.jconrel.2011.06.025
Console, 2003, Antennapedia and HIV transactivator of transcription (TAT) “protein transduction domains” promote endocytosis of high molecular weight cargo upon binding to cell surface glycosaminoglycans, J. Biol. Chem., 278, 35109, 10.1074/jbc.M301726200
Lundberg, 2007, Delivery of short interfering RNA using endosomolytic cell-penetrating peptides, FASEB J., 21, 2664, 10.1096/fj.06-6502com
Simeoni, 2003, Insight into the mechanism of the peptide-based gene delivery system MPG: implications for delivery of siRNA into mammalian cells, Nucleic Acids Res., 31, 2717, 10.1093/nar/gkg385
Fahmy, 2005, Surface modification of biodegradable polyesters with fatty acid conjugates for improved drug targeting, Biomaterials, 26, 5727, 10.1016/j.biomaterials.2005.02.025
Benfer, 2012, Cellular uptake mechanism and knockdown activity of siRNA-loaded biodegradable DEAPA-PVA-g-PLGA nanoparticles, Eur. J. Pharm. Biopharm., 80, 247, 10.1016/j.ejpb.2011.10.021
dos Santos, 2011, Effects of transport inhibitors on the cellular uptake of carboxylated polystyrene nanoparticles in different cell lines, PLoS One, 6, e24438, 10.1371/journal.pone.0024438
Gotte, 2004, Biglycan is internalized via a chlorpromazine-sensitive route, Cell. Mol. Biol. Lett., 9, 475
Ivanov, 2008, Pharmacological inhibition of endocytic pathways: is it specific enough to be useful, 10.1007/978-1-59745-178-9_2
Chen, 2011, Cholesterol sequestration by nystatin enhances the uptake and activity of endostatin in endothelium via regulating distinct endocytic pathways, Blood, 117, 6392, 10.1182/blood-2010-12-322867
Qaddoumi, 2003, Clathrin and caveolin-1 expression in primary pigmented rabbit conjunctival epithelial cells: role in PLGA nanoparticle endocytosis, Mol. Vis., 9, 559
Gratton, 2008, The effect of particle design on cellular internalization pathways, Proc. Natl. Acad. Sci. U.S.A., 105, 11613, 10.1073/pnas.0801763105
Araki, 2003, Phosphoinositide-3-kinase-independent contractile activities associated with Fc gamma-receptor-mediated phagocytosis and macropinocytosis in macrophages, J. Cell Sci., 116, 247, 10.1242/jcs.00235
Araki, 1996, A role for phosphoinositide 3-kinase in the completion of macropinocytosis and phagocytosis by macrophages, J. Cell Biol., 135, 1249, 10.1083/jcb.135.5.1249
Kruth, 2005, Macropinocytosis is the endocytic pathway that mediates macrophage foam cell formation with native low density lipoprotein, J. Biol. Chem., 280, 2352, 10.1074/jbc.M407167200
Schmidt, 2009, Regulation of endosomal membrane traffic by a Gadkin/AP-1/kinesin KIF5 complex, Proc. Natl. Acad. Sci. U.S.A., 106, 15344, 10.1073/pnas.0904268106
Harush-Frenkel, 2007, Targeting of nanoparticles to the clathrin-mediated endocytic pathway, Biochem. Biophys. Res. Commun., 353, 26, 10.1016/j.bbrc.2006.11.135
Verma, 2010, Effect of surface properties on nanoparticle-cell interactions, Small, 6, 12, 10.1002/smll.200901158
Tassa, 2010, Binding affinity and kinetic analysis of targeted small molecule-modified nanoparticles, Bioconjugate Chem., 21, 14, 10.1021/bc900438a
Kawamura, 2006, Probing the impact of valency on the routing of arginine-rich peptides into eukaryotic cells, Biochemistry, 45, 1116, 10.1021/bi051338e
Xia, 2012, Penetratin-functionalized PEG-PLA nanoparticles for brain drug delivery, Int. J. Pharm., 436, 840, 10.1016/j.ijpharm.2012.07.029
Wang, 2014, Low-molecular-weight protamine-modified PLGA nanoparticles for overcoming drug-resistant breast cancer, J. Controlled Release, 192, 47, 10.1016/j.jconrel.2014.06.051
Liu, 2013, Oligoarginine-modified biodegradable nanoparticles improve the intestinal absorption of insulin, Int. J. Pharm., 448, 159, 10.1016/j.ijpharm.2013.03.033
Chen, 2012, Folic acid and cell-penetrating peptide conjugated PLGA-PEG bifunctional nanoparticles for vincristine sulfate delivery, Eur. J. Pharm. Sci., 47, 430, 10.1016/j.ejps.2012.07.002
Fields, 2012, Surface modified poly(beta amino ester)-containing nanoparticles for plasmid DNA delivery, J. Controlled Release, 164, 41, 10.1016/j.jconrel.2012.09.020
Verma, 2008, Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles, Nat. Mater., 7, 588, 10.1038/nmat2202
Moradi, 2012, Ligand density and clustering effects on endocytosis of folate modified nanoparticles, RSC Adv., 2, 3025, 10.1039/c2ra01168a
Mishra, 2009, Cell-penetrating peptides and peptide nucleic acid-coupled MRI contrast agents: evaluation of cellular delivery and target binding, Bioconjugate Chem., 20, 1860, 10.1021/bc9000454
Deshayes, 2006, Interactions of amphipathic CPPs with model membranes, Biochim. Biophys. Acta, 1758, 328, 10.1016/j.bbamem.2005.10.004
Endoh, 2009, Cellular siRNA delivery using cell-penetrating peptides modified for endosomal escape, Adv. Drug Delivery Rev., 61, 704, 10.1016/j.addr.2009.04.005
Duchardt, 2007, A comprehensive model for the cellular uptake of cationic cell-penetrating peptides, Traffic, 8, 848, 10.1111/j.1600-0854.2007.00572.x
Huh, 2003, PLGA-PEG block copolymers for drug formulations, Drug Dev. Delivery, 3, 5
Averineni, 2012, PLGA 50:50 nanoparticles of paclitaxel: development, in vitro anti-tumor activity in BT-549 cells and in vivo evaluation, Bull. Mater. Sci., 35, 319, 10.1007/s12034-012-0313-7
Marrache, 2013, Biodegradable synthetic high-density lipoprotein nanoparticles for atherosclerosis, Proc. Natl. Acad. Sci. U.S.A., 110, 9445, 10.1073/pnas.1301929110
Manoochehri, 2013, Surface modification of PLGA nanoparticles via human serum albumin conjugation for controlled delivery of docetaxel, Daru, 21, 58, 10.1186/2008-2231-21-58
Munro, 2004, Adsorption of lipid-functionalized poly(ethylene glycol) to gold surfaces as a cushion for polymer-supported lipid bilayers, Langmuir, 20, 3339, 10.1021/la036062v
Li, 2006, Shape and aggregation control of nanoparticles: Not shaken, not stirred, J. Am. Chem. Soc., 128, 968, 10.1021/ja056609n
Kumar, 2012, Drug-loaded PLGA nanoparticles for oral administration: fundamental issues and challenges ahead, Crit. Rev. Ther. Drug Carrier Syst., 29, 149, 10.1615/CritRevTherDrugCarrierSyst.v29.i2.20
Avgoustakis, 2004, Pegylated poly(lactide) and poly(lactide-co-glycolide) nanoparticles: preparation, properties and possible applications in drug delivery, Curr. Drug Delivery, 1, 321, 10.2174/1567201043334605
Aggarwal, 2009, Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy, Adv. Drug Delivery Rev., 61, 428, 10.1016/j.addr.2009.03.009
Hotze, 2010, Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment, J. Environ. Qual., 39, 1909, 10.2134/jeq2009.0462
Lundqvist, 2008, Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts, Proc. Natl. Acad. Sci. U.S.A., 105, 14265, 10.1073/pnas.0805135105
Xiang, 2013, Experimental and statistical analysis of surface charge, aggregation and adsorption behaviors of surface-functionalized titanium dioxide nanoparticles in aquatic system, J. Nanoparticle Res., 15, 1293, 10.1007/s11051-012-1293-7
Werth, 2003, Agglomeration of charged nanopowders in suspensions, Powder Technol., 133, 106, 10.1016/S0032-5910(03)00096-2
Werth, 2002, Agglomeration in charged suspensions, Comput. Phys. Commun., 147, 259, 10.1016/S0010-4655(02)00285-0
Bagwe, 2006, Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding, Langmuir, 22, 4357, 10.1021/la052797j