Cell activity manipulation through optimizing piezoelectricity and polarization of diphenylalanine peptide nanotube-based nanocomposite

Chemical Engineering Journal - Tập 468 - Trang 143597 - 2023
Huiling Guo1,2, Dong-Min Lee3, Pin Zhao3, So-Hee Kim4, Inah Hyun4, Byung-Joon Park3, Ju-Hyuck Lee5, Huajun Sun1,2, Sang-Woo Kim4
1State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China
2School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, PR China
3School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
4Department of Materials Science and Engineering, Center for Human-oriented Triboelectric Energy Harvesting, Yonsei University, Seoul 03722, Republic of Korea
5Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea

Tài liệu tham khảo

Curie, 1880, Développement par compression de l’électricité polaire dans les cristaux hémièdres à faces inclinées, Bulletin de La Société Minéralogique de France., 3, 90, 10.3406/bulmi.1880.1564 Yang, 2020, Piezoelectric and pyroelectric effects induced by interface polar symmetry, Nature, 584, 377, 10.1038/s41586-020-2602-4 Wang, 2006, Piezoelectric nanogenerators based on zinc oxide nanowire arrays, Science, 312, 242, 10.1126/science.1124005 Dagdeviren, 2017, Flexible piezoelectric devices for gastrointestinal motility sensing, Nat. Biomed. Eng., 1, 807, 10.1038/s41551-017-0140-7 Hwang, 2015, Self-powered deep brain stimulation via a flexible PIMNT energy harvester, Energy Environ. Sci., 8, 2677, 10.1039/C5EE01593F Zhu, 2020, Piezocatalytic tumor therapy by ultrasound-triggered and BaTiO3-mediated piezoelectricity, Adv. Mater., 32, 2001976, 10.1002/adma.202001976 Kim, 2017, In vivo self-powered wireless transmission using biocompatible flexible energy harvesters, Adv. Funct. Mater., 27, 1700341, 10.1002/adfm.201700341 Zhang, 2018, Fully rollable lead-free poly(vinylidene fluoride)-niobate-based nanogenerator with ultra-flexible nano-network electrodes, ACS Nano, 12, 4803, 10.1021/acsnano.8b01534 Lee, 2015, Control of skin potential by triboelectrification with ferroelectric polymers, Adv. Mater., 27, 5553, 10.1002/adma.201502463 Wang, 2022, Natural piezoelectric biomaterials: a biocompatible and sustainable building block for biomedical devices, ACS Nano, 16, 17708, 10.1021/acsnano.2c08164 Lee, 2018, Diphenylalanine peptide nanotube energy harvesters, ACS Nano, 12, 8138, 10.1021/acsnano.8b03118 Kholkin, 2010, Strong Piezoelectricity in bioinspired peptide nanotubes, ACS Nano, 4, 610, 10.1021/nn901327v Kol, 2005, Self-assembled peptide nanotubes are uniquely rigid bioinspired supramolecular structures, Nano Lett., 5, 1343, 10.1021/nl0505896 Niu, 2007, Using the bending beam model to estimate the elasticity of diphenylalanine Nanotubes, Langmuir, 23, 7443, 10.1021/la7010106 Nguyen, 2016, Self-assembly of diphenylalanine peptide with controlled polarization for power generation, Nat. Commun., 7, 10.1038/ncomms13566 Persano, 2013, High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene), Nat. Commun., 4, 10.1038/ncomms2639 Reches, 2006, Controlled patterning of aligned self-assembled peptide nanotubes, Nat. Nanotechnol., 1, 195, 10.1038/nnano.2006.139 Zhang, 2010, A self-assembly pathway to aligned monodomain gels, Nat. Mater., 9, 594, 10.1038/nmat2778 Gui, 2018, Enhanced output-performance of piezoelectric poly(vinylidene fluoride trifluoroethylene) fibers-based nanogenerator with interdigital electrodes and well-ordered cylindrical cavities, Appl. Phys. Lett., 112, 072902, 10.1063/1.5019319 Tao, 2021, Diphenylalanine-based degradable piezoelectric nanogenerators enabled by polylactic acid polymer-assisted transfer, Nano Energy, 88, 10.1016/j.nanoen.2021.106229 Zheng, 2016, Biodegradable triboelectric nanogenerator as a life-time designed implantable power source, Sci. Adv., 2, 10.1126/sciadv.1501478 Chiellini, 2003, Biodegradation of poly (vinyl alcohol) based materials, Prog. Polym. Sci., 28, 963, 10.1016/S0079-6700(02)00149-1 Gaaz, 2015, Properties and applications of polyvinyl alcohol, halloysite nanotubes and their nanocomposites, Molecules, 20, 22833, 10.3390/molecules201219884 Lee, 2022, Ultrasound-mediated triboelectric nanogenerator for powering on-demand transient electronics, Sci. Adv., 8, eabl8423, 10.1126/sciadv.abl8423 Zhang, 2019, Performance enhancement of flexible piezoelectric nanogenerator via doping and rational 3D structure design for self-powered mechanosensational system, Adv. Funct. Mater., 29, 1904259, 10.1002/adfm.201904259 Guo, 2022, Mitigating the negative piezoelectricity in organic/inorganic hybrid materials for high-performance piezoelectric nanogenerators, ACS Appl. Mater. Interfaces., 14, 34733, 10.1021/acsami.2c08162 Wang, 2021, High performance piezoelectric nanogenerator with silver nanowires embedded in polymer matrix for mechanical energy harvesting, Ceram. Int., 47, 35096, 10.1016/j.ceramint.2021.09.052 Chen, 2022, A method for quantitatively separating the piezoelectric component from the as-received “Piezoelectric” signal, Nat. Commun., 13 Hu, 2019, Strategies to achieve high performance piezoelectric nanogenerators, Nano Energy, 55, 288, 10.1016/j.nanoen.2018.10.053 Han, 2018, Point-defect-passivated MoS2 nanosheet-based high performance piezoelectric nanogenerator, Adv. Mater., 30, 1800342, 10.1002/adma.201800342 Kang, 2022, Core-shell ZnO@microporous organic polymer nanospheres as enhanced piezo-triboelectric energy harvesting materials, Angew. Chem. Int. Ed., 61, e202209659, 10.1002/anie.202209659 Li, 2021, Cell activity modulation and its specific function maintenance by bioinspired electromechanical nanogenerator, Sci. Adv., 7, 10.1126/sciadv.abh2350 Feng, 2015, Soft graphene nanofibers designed for the acceleration of nerve growth and development, Adv. Mater., 27, 6462, 10.1002/adma.201503319 Khatib, 2004, Physiologic electrical stimulation provokes intracellular calcium increase mediated by phospholipase C activation in human osteoblasts, FASEB J., 18, 1903, 10.1096/fj.04-1814fje Wang, 2018, Facile strategy to generate aligned polymer nanofibers: effects on cell adhesion, ACS Appl. Mater. Interfaces., 10, 1566, 10.1021/acsami.7b16057 Xu, 2020, ECM-inspired micro/nanofibers for modulating cell function and tissue generation, Sci. Adv., 6, 10.1126/sciadv.abc2036