Cell activity manipulation through optimizing piezoelectricity and polarization of diphenylalanine peptide nanotube-based nanocomposite
Tài liệu tham khảo
Curie, 1880, Développement par compression de l’électricité polaire dans les cristaux hémièdres à faces inclinées, Bulletin de La Société Minéralogique de France., 3, 90, 10.3406/bulmi.1880.1564
Yang, 2020, Piezoelectric and pyroelectric effects induced by interface polar symmetry, Nature, 584, 377, 10.1038/s41586-020-2602-4
Wang, 2006, Piezoelectric nanogenerators based on zinc oxide nanowire arrays, Science, 312, 242, 10.1126/science.1124005
Dagdeviren, 2017, Flexible piezoelectric devices for gastrointestinal motility sensing, Nat. Biomed. Eng., 1, 807, 10.1038/s41551-017-0140-7
Hwang, 2015, Self-powered deep brain stimulation via a flexible PIMNT energy harvester, Energy Environ. Sci., 8, 2677, 10.1039/C5EE01593F
Zhu, 2020, Piezocatalytic tumor therapy by ultrasound-triggered and BaTiO3-mediated piezoelectricity, Adv. Mater., 32, 2001976, 10.1002/adma.202001976
Kim, 2017, In vivo self-powered wireless transmission using biocompatible flexible energy harvesters, Adv. Funct. Mater., 27, 1700341, 10.1002/adfm.201700341
Zhang, 2018, Fully rollable lead-free poly(vinylidene fluoride)-niobate-based nanogenerator with ultra-flexible nano-network electrodes, ACS Nano, 12, 4803, 10.1021/acsnano.8b01534
Lee, 2015, Control of skin potential by triboelectrification with ferroelectric polymers, Adv. Mater., 27, 5553, 10.1002/adma.201502463
Wang, 2022, Natural piezoelectric biomaterials: a biocompatible and sustainable building block for biomedical devices, ACS Nano, 16, 17708, 10.1021/acsnano.2c08164
Lee, 2018, Diphenylalanine peptide nanotube energy harvesters, ACS Nano, 12, 8138, 10.1021/acsnano.8b03118
Kholkin, 2010, Strong Piezoelectricity in bioinspired peptide nanotubes, ACS Nano, 4, 610, 10.1021/nn901327v
Kol, 2005, Self-assembled peptide nanotubes are uniquely rigid bioinspired supramolecular structures, Nano Lett., 5, 1343, 10.1021/nl0505896
Niu, 2007, Using the bending beam model to estimate the elasticity of diphenylalanine Nanotubes, Langmuir, 23, 7443, 10.1021/la7010106
Nguyen, 2016, Self-assembly of diphenylalanine peptide with controlled polarization for power generation, Nat. Commun., 7, 10.1038/ncomms13566
Persano, 2013, High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene), Nat. Commun., 4, 10.1038/ncomms2639
Reches, 2006, Controlled patterning of aligned self-assembled peptide nanotubes, Nat. Nanotechnol., 1, 195, 10.1038/nnano.2006.139
Zhang, 2010, A self-assembly pathway to aligned monodomain gels, Nat. Mater., 9, 594, 10.1038/nmat2778
Gui, 2018, Enhanced output-performance of piezoelectric poly(vinylidene fluoride trifluoroethylene) fibers-based nanogenerator with interdigital electrodes and well-ordered cylindrical cavities, Appl. Phys. Lett., 112, 072902, 10.1063/1.5019319
Tao, 2021, Diphenylalanine-based degradable piezoelectric nanogenerators enabled by polylactic acid polymer-assisted transfer, Nano Energy, 88, 10.1016/j.nanoen.2021.106229
Zheng, 2016, Biodegradable triboelectric nanogenerator as a life-time designed implantable power source, Sci. Adv., 2, 10.1126/sciadv.1501478
Chiellini, 2003, Biodegradation of poly (vinyl alcohol) based materials, Prog. Polym. Sci., 28, 963, 10.1016/S0079-6700(02)00149-1
Gaaz, 2015, Properties and applications of polyvinyl alcohol, halloysite nanotubes and their nanocomposites, Molecules, 20, 22833, 10.3390/molecules201219884
Lee, 2022, Ultrasound-mediated triboelectric nanogenerator for powering on-demand transient electronics, Sci. Adv., 8, eabl8423, 10.1126/sciadv.abl8423
Zhang, 2019, Performance enhancement of flexible piezoelectric nanogenerator via doping and rational 3D structure design for self-powered mechanosensational system, Adv. Funct. Mater., 29, 1904259, 10.1002/adfm.201904259
Guo, 2022, Mitigating the negative piezoelectricity in organic/inorganic hybrid materials for high-performance piezoelectric nanogenerators, ACS Appl. Mater. Interfaces., 14, 34733, 10.1021/acsami.2c08162
Wang, 2021, High performance piezoelectric nanogenerator with silver nanowires embedded in polymer matrix for mechanical energy harvesting, Ceram. Int., 47, 35096, 10.1016/j.ceramint.2021.09.052
Chen, 2022, A method for quantitatively separating the piezoelectric component from the as-received “Piezoelectric” signal, Nat. Commun., 13
Hu, 2019, Strategies to achieve high performance piezoelectric nanogenerators, Nano Energy, 55, 288, 10.1016/j.nanoen.2018.10.053
Han, 2018, Point-defect-passivated MoS2 nanosheet-based high performance piezoelectric nanogenerator, Adv. Mater., 30, 1800342, 10.1002/adma.201800342
Kang, 2022, Core-shell ZnO@microporous organic polymer nanospheres as enhanced piezo-triboelectric energy harvesting materials, Angew. Chem. Int. Ed., 61, e202209659, 10.1002/anie.202209659
Li, 2021, Cell activity modulation and its specific function maintenance by bioinspired electromechanical nanogenerator, Sci. Adv., 7, 10.1126/sciadv.abh2350
Feng, 2015, Soft graphene nanofibers designed for the acceleration of nerve growth and development, Adv. Mater., 27, 6462, 10.1002/adma.201503319
Khatib, 2004, Physiologic electrical stimulation provokes intracellular calcium increase mediated by phospholipase C activation in human osteoblasts, FASEB J., 18, 1903, 10.1096/fj.04-1814fje
Wang, 2018, Facile strategy to generate aligned polymer nanofibers: effects on cell adhesion, ACS Appl. Mater. Interfaces., 10, 1566, 10.1021/acsami.7b16057
Xu, 2020, ECM-inspired micro/nanofibers for modulating cell function and tissue generation, Sci. Adv., 6, 10.1126/sciadv.abc2036
