Cell-Free Expression and Assembly of ATP Synthase

Journal of Molecular Biology - Tập 413 - Trang 593-603 - 2011
Doreen Matthies1, Stefan Haberstock2, Friederike Joos1, Volker Dötsch2,3, Janet Vonck1, Frank Bernhard2, Thomas Meier1,3
1Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt/Main, Germany
2Center for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe University of Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt/Main, Germany
3Cluster of Excellence Macromolecular Complexes, Frankfurt/Main, Germany

Tài liệu tham khảo

Schwarz, 2008, Production of membrane proteins using cell-free expression systems, Proteomics, 8, 3933, 10.1002/pmic.200800171 Klammt, 2005, Evaluation of detergents for the soluble expression of α-helical and β-barrel-type integral membrane proteins by a preparative scale individual cell-free expression system, FEBS J., 272, 6024, 10.1111/j.1742-4658.2005.05002.x Kalmbach, 2007, Functional cell-free synthesis of a seven helix membrane protein: in situ insertion of bacteriorhodopsin into liposomes, J. Mol. Biol., 371, 639, 10.1016/j.jmb.2007.05.087 Katzen, 2009, Membrane protein expression: no cells required, Trends Biotechnol., 27, 455, 10.1016/j.tibtech.2009.05.005 Junge, 2010, Advances in cell-free protein synthesis for the functional and structural analysis of membrane proteins, N. Biotechnol., 28, 262, 10.1016/j.nbt.2010.07.002 Katayama, 2010, Cell-free synthesis of cytochrome c oxidase, a multicomponent membrane protein, J. Bioenerg. Biomembr., 42, 235, 10.1007/s10863-010-9285-8 DeLano, 2002 Watt, 2010, Bioenergetic cost of making an adenosine triphosphate molecule in animal mitochondria, Proc. Natl Acad. Sci. USA, 107, 16823, 10.1073/pnas.1011099107 Pogoryelov, 2005, The c15 ring of the Spirulina platensis F-ATP synthase: F1/Fo symmetry mismatch is not obligatory, EMBO Rep., 6, 1040, 10.1038/sj.embor.7400517 Meier, 2005, Structure of the rotor ring of F-type Na+-ATPase from Ilyobacter tartaricus, Science, 308, 659, 10.1126/science.1111199 Abrahams, 1994, Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochondria, Nature, 370, 621, 10.1038/370621a0 Boyer, 1997, The ATP synthase—a splendid molecular machine, Annu. Rev. Biochem., 66, 717, 10.1146/annurev.biochem.66.1.717 Noji, 1997, Direct observation of the rotation of F1-ATPase, Nature, 386, 299, 10.1038/386299a0 Cook, 2003, Purification and biochemical characterization of the F1Fo-ATP synthase from thermoalkaliphilic Bacillus sp. strain TA2.A1, J. Bacteriol., 185, 4442, 10.1128/JB.185.15.4442-4449.2003 Keis, 2004, Cloning and molecular characterization of the atp operon encoding for the F1Fo-ATP synthase from a thermoalkaliphilic Bacillus sp. strain TA2.A1, Biochim. Biophys. Acta, 1676, 112, 10.1016/j.bbaexp.2003.11.002 Stocker, 2007, The structural basis for unidirectional rotation of thermoalkaliphilic F1-ATPase, Structure, 15, 904, 10.1016/j.str.2007.06.009 McMillan, 2007, A specific adaptation in the a subunit of thermoalkaliphilic F1Fo-ATP synthase enables ATP synthesis at high pH but not at neutral pH values, J. Biol. Chem., 282, 17395, 10.1074/jbc.M611709200 Meier, 2007, A tridecameric c ring of the ATP synthase from the thermoalkaliphilic Bacillus sp. strain TA2.A1 facilitates ATP synthesis at low electrochemical proton potential, Mol. Microbiol., 65, 1181, 10.1111/j.1365-2958.2007.05857.x Hicks, 1990, Purification and reconstitution of the F1F0-ATP synthase from alkaliphilic Bacillus firmus OF4. Evidence that the enzyme translocates H+ but not Na+, J. Biol. Chem., 265, 20547, 10.1016/S0021-9258(17)30537-9 Hoffmann, 1990, The ATPase of Bacillus alcalophilus. Purification and properties of the enzyme, Eur. J. Biochem., 194, 423, 10.1111/j.1432-1033.1990.tb15635.x Bowler, 2006, How azide inhibits ATP hydrolysis by the F-ATPases, Proc. Natl Acad. Sci. USA, 103, 8646, 10.1073/pnas.0602915103 Couoh-Cardel, 2010, Structure of dimeric F1Fo-ATP synthase, J. Biol. Chem., 285, 36447, 10.1074/jbc.M110.144907 Matthies, 2009, The c13 ring from a thermoalkaliphilic ATP synthase reveals an extended diameter due to a special structural region, J. Mol. Biol., 388, 611, 10.1016/j.jmb.2009.03.052 Meier, 2001, The central plug in the reconstituted undecameric c cylinder of a bacterial ATP synthase consists of phospholipids, FEBS Lett., 505, 353, 10.1016/S0014-5793(01)02837-X Mellwig, 2003, A unique resting position of the ATP-synthase from chloroplasts, J. Biol. Chem., 278, 18544, 10.1074/jbc.M212852200 Lau, 2010, Structure of intact Thermus thermophilus V-ATPase by cryo-EM reveals organization of the membrane-bound Vo motor, Proc. Natl Acad. Sci. USA, 107, 1367, 10.1073/pnas.0911085107 Morgner, 2008, LILBID-mass spectrometry applied to the mass analysis of RNA polymerase II and an F1Fo-ATP synthase, Int. J. Mass Spectrom., 277, 309, 10.1016/j.ijms.2008.08.001 Brusilow, 1981, In vitro synthesis of the Fo and F1 components of the proton translocating ATPase of Escherichia coli, J. Biol. Chem., 256, 3141, 10.1016/S0021-9258(19)69576-1 Lian, 2009, High-level expression of soluble subunit b of F1Fo ATP synthase in Escherichia coli cell-free system, Appl. Microbiol. Biotechnol., 85, 303, 10.1007/s00253-009-2055-z Kuruma, 2010, Production of multi-subunit complexes on liposome through an E. coli cell-free expression system, Methods Mol. Biol., 607, 161, 10.1007/978-1-60327-331-2_14 Ozaki, 2008, UncI protein can mediate ring-assembly of c-subunits of F1Fo-ATP synthase in vitro, Biochem. Biophys. Res. Commun., 367, 663, 10.1016/j.bbrc.2007.12.170 McCarthy, 1985, Translational initiation frequency of atp genes from Escherichia coli: identification of an intercistronic sequence that enhances translation, EMBO J., 4, 519, 10.1002/j.1460-2075.1985.tb03659.x Kol, 2008, Mechanisms of YidC-mediated insertion and assembly of multimeric membrane protein complexes, J. Biol. Chem., 283, 31269, 10.1074/jbc.R800029200 Brusilow, 1993, Assembly of the Escherichia coli F1Fo ATPase, a large multimeric membrane-bound enzyme, Mol. Microbiol., 9, 419, 10.1111/j.1365-2958.1993.tb01703.x Schneppe, 1991, Detection and localization of the i protein in Escherichia coli cells using antibodies, FEBS Lett., 292, 145, 10.1016/0014-5793(91)80853-U Suzuki, 2007, The product of uncI gene in F1Fo-ATP synthase operon plays a chaperone-like role to assist c-ring assembly, Proc. Natl Acad. Sci. USA, 104, 20776, 10.1073/pnas.0708075105 Shimizu, 2010, PURE technology, Methods Mol. Biol., 607, 11, 10.1007/978-1-60327-331-2_2 Kanazawa, 1984, Overproduction of subunit a of the Fo component of proton-translocating ATPase inhibits growth of Escherichia coli cells, J. Bacteriol., 158, 300, 10.1128/JB.158.1.300-306.1984 Schwarz, 2007, Preparative scale expression of membrane proteins in Escherichia coli-based continuous exchange cell-free systems, Nat. Protoc., 2, 2945, 10.1038/nprot.2007.426 Kigawa, 1999, Cell-free production and stable-isotope labeling of milligram quantities of proteins, FEBS Lett., 442, 15, 10.1016/S0014-5793(98)01620-2 Schneider, 2010, Membrane protein expression in cell-free systems, Methods Mol. Biol., 601, 165, 10.1007/978-1-60761-344-2_11 Klionsky, 1984, In vivo evidence for the role of the ɛ subunit as an inhibitor of the proton-translocating ATPase of Escherichia coli, J. Bacteriol., 160, 1055, 10.1128/JB.160.3.1055-1060.1984 Studier, 2005, Protein production by auto-induction in high density shaking cultures, Protein Expr. Purif., 41, 207, 10.1016/j.pep.2005.01.016 Ludtke, 1999, EMAN: semiautomated software for high-resolution single-particle reconstructions, J. Struct. Biol., 128, 82, 10.1006/jsbi.1999.4174 van Heel, 1996, A new generation of the IMAGIC image processing system, J. Struct. Biol., 116, 17, 10.1006/jsbi.1996.0004 Kleymann, 1995, Use of antibody fragments (Fv) in immunocytochemistry, J. Histochem. Cytochem., 43, 607, 10.1177/43.6.7769231 Schägger, 1987, Tricine–sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa, Anal. Biochem., 166, 368, 10.1016/0003-2697(87)90587-2 Nesterenko, 1994, A simple modification of Blum's silver stain method allows for 30 minute detection of proteins in polyacrylamide gels, J. Biochem. Biophys. Methods, 28, 239, 10.1016/0165-022X(94)90020-5