Cell Concepts of Metal–Sulfur Batteries (Metal = Li, Na, K, Mg): Strategies for Using Sulfur in Energy Storage Applications

Springer Science and Business Media LLC - Tập 375 Số 5 - 2017
Lukas Medenbach1, Philipp Adelhelm1
1Friedrich-Schiller-University Jena

Tóm tắt

Từ khóa


Tài liệu tham khảo

Dewulf J, Van der Vorst G, Denturck K, Van Langenhove H, Ghyoot W, Tytgat J et al (2010) Recycling rechargeable lithium ion batteries: critical analysis of natural resource savings. Resour Conserv Recycl 54(4):229–234

Wadia C, Albertus P, Srinivasan V (2011) Resource constraints on the battery energy storage potential for grid and transportation applications. J Power Sources 196(3):1593–1598

Larcher D, Tarascon JM (2015) Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 7(1):19–29

Grey CP, Tarascon JM (2017) Sustainability and in situ monitoring in battery development. Nat Mater 16(1):45–56

Thielmann A, Sauer A, Wietschel M (2015) Gesamt-Roadmap Energiespeicher für die Elektromobilitaet 2030. Fraunhofer-Institute ISI, Karlsruhe

Nykvist B, Nilsson M (2015) Rapidly falling costs of battery packs for electric vehicles. Nat Clim Chang 5(4):329–332

Nayak PK, Yang L, Brehm W, Adelhelm P (2017) From lithium-ion to sodium-ion batteries: a materials perspective. Angew Chem Int Ed Engl. doi: 10.1002/anie.201703772

Hu Y (2016) Batteries: Getting solid. Nature Energy. 1(4):16042. http://www.nature.com/articles/nenergy201642

Janek J, Zeier W (2016) A solid future for battery development. Nat Energy 1:16141. doi: 10.1038/nenergy.2016.141

Kato Y, Hori S, Saito T, Suzuki K, Hirayama M, Mitsui A, Yonemura M, Iba H, Kann R (2016) High-power all-solid-state batteries using sulfide superionic conductors. Nat Energy 1:16030. doi: 10.1038/nenergy.2016.30

Aurbach D, McCloskey BD, Nazar LF, Bruce PG (2016) Advances in understanding mechanisms underpinning lithium–air batteries. Nature Energy 1(9):16128. doi: 10.1038/nenergy.2016.128

Soloveichik G (2015) Flow Batteries: Current Status and Trends. Chem Rev 115:11533–11558. doi: 10.1021/cr500720t

Winsberg J, Hagemann T, Janoschka T, Hager MD, Schubert US (2017) Redox-Flow Batteries: From Metals to Organic Redox-Active Materials. Angew Chem Int Ed 56(3):686–711. doi: 10.1002/anie.201604925

Hueso KB, Armand M, Rojo T (2013) High temperature sodium batteries: status, challenges and future trends. Energy Environ Sci 6:734–749. doi: 10.1039/C3EE24086J

Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Research Development on Sodium-Ion Batteries. Chem Rev 114(23):11636–11682. doi: 10.1021/cr500192f

Sathiya M, Rousse G, Ramesha K, Laisa CP, Vezin H, Sougrati MT et al (2013) Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nat Mater 12(9):827–835

McCloskey BD, Garcia JM, Luntz AC (2014) Chemical and electrochemical differences in nonaqueous Li–O2 and Na–O2 batteries. J Phys Chem Lett. 5(7):1230–1235

Adelhelm P, Hartmann P, Bender CL, Busche M, Eufinger C, Janek J (2015) From lithium to sodium: cell chemistry of room-temperature sodium–air and sodium–sulfur batteries. Beilstein J Nanotechnol 6:1016–1055

OXIS Energy Ltd (2017) Cited 2017 March 19; Available from https://oxisenergy.com/ . Accessed 19 Mar 2017

Raiss C, Peppler K, Janek J, Adelhelm P (2014) Pitfalls in the characterization of sulfur/carbon nanocomposite materials for lithium–sulfur batteries. Carbon 79:245–255

Levin BDA, Zachman MJ, Werner JG, Sahore R, Nguyen KX, Han Y et al (2017) Characterization of sulfur and nanostructured sulfur battery cathodes in electron microscopy without sublimation artifacts. Microsc Microanal 23:15–162

Steudel R (2003) Inorganic Polysulfides Sn 2−and Radical Anions Sn ·−. In: Steudel R (ed) Elemental sulfur and sulfur-rich compounds II. Topics in Current Chemistry, vol 231. Springer, Berlin, Heidelberg. doi: 10.1007/b11909

Mikhaylik YV, Akridge JR (2004) Polysulfide shuttle study in the Li/S battery system. J Electrochem Soc 151(11):A1969–A1976

Rehman S, Khan K, Zhao Y, Hou Y (2017) Nanostructured cathode materials for lithium–sulfur batteries: progress, challenges and perspectives. J Mater Chem A 5(7):3014–3038

Ji X, Lee KT, Nazar LF (2009) A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat Mater 8(6):500–506

Holleman AF, Wiberg E, N. W. Lehrbuch der Anorganischen Chemie. 2007;102

Zhang SS (2013) Liquid electrolyte lithium/sulfur battery: fundamental chemistry, problems, and solutions. J Power Sources 231:153–162

Adelhelm P, Hartmann P, Bender CL, Busche M, Eufinger C, Janek J (2015) From lithium to sodium: cell chemistry of room-temperature sodium–air and sodium–sulfur batteries. Beilstein J Nanotechnol 6:1016–1055

Gao J, Lowe MA, Kiya Y, Abruña HD (2011) Effects of liquid electrolytes on the charge-discharge performance of rechargeable lithium/sulfur batteries: electrochemical and in-situ X-ray absorption spectroscopic studies. J Phys Chem C 115(50):25132–25137

Yim T, Park M-S, Yu J-S, Kim KJ, Im KY, Kim J-H et al (2013) Effect of chemical reactivity of polysulfide toward carbonate-based electrolyte on the electrochemical performance of Li–S batteries. Electrochim Acta 107:454–460

Fan FY, Pan MS, Lau KC, Assary RS, Woodford WH, Curtiss LA et al (2016) Solvent effects on polysulfide redox kinetics and ionic conductivity in lithium–sulfur batteries. J Electrochem Soc 163(14):A3111–A3116

Zhang SS (2012) Binder based on polyelectrolyte for high capacity density lithium/sulfur battery. J Electrochem Soc 159(8):A1226–A1229

Wenzel S, Metelmann H, Raiss C, Durr AK, Janek J, Adelhelm P (2013) Thermodynamics and cell chemistry of room-temperature sodium/sulfur cells with liquid and liquid/solid electrolyte. J Power Sources 243:758–765

Elazari R, Salitra G, Garsuch A, Panchenko A, Aurbach D (2011) Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable Li–S batteries. Adv Mater 23(47):5641

Hagen M, Dörfler S, Fanz P, Berger T, Speck R, Tübke J et al (2013) Development and costs calculation of lithium–sulfur cells with high sulfur load and binder free electrodes. J Power Sources 224:260–268

Xu W, Wang J, Ding F, Chen X, Nasybulin E, Zhang Y et al (2014) Lithium metal anodes for rechargeable batteries. Energy Environ Sci 7(2):513–537

Janek J, Adelhelm P (2013) Zukunftstechnologien. In: Korthauer R (ed) Handbuch lithium-ionen-batterien. Springer Berlin Heidelberg, Berlin, pp 199–217

Nagao M, Hayashi A, Tatsumisago M (2011) Sulfur–carbon composite electrode for all-solid-state Li/S battery with Li2S–P2S5 solid electrolyte. Electrochim Acta 56(17):6055–6059

Nagao M, Imade Y, Narisawa H, Kobayashi T, Watanabe R, Yokoi T et al (2013) All-solid-state Li–sulfur batteries with mesoporous electrode and thio-LISICON solid electrolyte. J Power Sources 222:237–242

Trevey JE, Gilsdorf JR, Stoldt CR, Lee SH, Liu P (2012) Electrochemical investigation of all-solid-state lithium batteries with a high capacity sulfur-based electrode. J Electrochem Soc 159(7):A1019–A1022

Yu X, Xie J, Yang J, Wang K (2004) All solid-state rechargeable lithium cells based on nano-sulfur composite cathodes. J Power Sources 132(1–2):181–186

Yamin HP (1983) E. Electrochemistry of a nonaqueous lithium/sulfur cell. J Power Sources 9(3):281–287

Ji X, Nazar LF (2010) Advances in Li–S batteries. J Mater Chem 20(44):9821–9826

Bresser D, Passerini S, Scrosati B (2013) Recent progress and remaining challenges in sulfur-based lithium secondary batteries—a review. Chem Commun 49(90):10545–10562

Evers S, Nazar LF (2013) New approaches for high energy density lithium–sulfur battery cathodes. Acc Chem Res 46(5):1135–1143

Yin YX, Xin S, Guo YG, Wan LJ (2013) Lithium–sulfur batteries: electrochemistry, materials, and prospects. Angew Chem Int Ed 52(50):13186–13200

Manthiram A, Fu YZ, Chung SH, Zu CX, Su YS (2014) Rechargeable lithium–sulfur batteries. Chem Rev 114(23):11751–11787

Lin Z, Liang CD (2015) Lithium–sulfur batteries: from liquid to solid cells. J Mater Chem A 3(3):936–958

Rosenman A, Markevich E, Salitra G, Aurbach D, Garsuch A, Chesneau FF (2015) Review on Li–sulfur battery systems: an integral perspective. Adv Energy Mater 5(16):1500212

Borchardt L, Oschatz M, Kaskel S (2016) Carbon Materials for lithium sulfur batteries-ten critical questions. Chem Eur J 22(22):7324–7351

Seh ZW, Sun YM, Zhang QF, Cui Y (2016) Designing high-energy lithium–sulfur batteries. Chem Soc Rev 45(20):5605–5634

Okamoto H (1995) The Li–S (lithium–sulfur) system. J Phase Equilib 16(1):94–97

Sangster J, Pelton AD (1997) The Na–S (sodium–sulfur) system. J Phase Equilib 18:89–96

Sangster J, Pelton AD (1997) The K–S (Potassium–Sulfur) system. J Phase Equilib 18:82–88

Predel B (1997) Mg–S (magnesium–sulfur). In: Madelung O (ed) Li–Mg—Nd–Zr. Springer Berlin Heidelberg, Berlin, p 1

Busche MR, Drossel T, Leichtweiss T, Weber DA, Falk M, Schneider M et al (2016) Dynamic formation of a solid-liquid electrolyte interphase and its consequences for hybrid-battery concepts. Nat Chem 8(5):426–434

Huang J-Q, Zhang Q, Peng H-J, Liu X-Y, Qian W-Z, Wei F (2014) Ionic shield for polysulfides towards highly-stable lithium–sulfur batteries. Energy Environ Sci 7(1):347–353

Yu X, Manthiram A (2016) Performance enhancement and mechanistic studies of room-temperature sodium–sulfur batteries with a carbon-coated functional Nafion separator and a Na2S/activated carbon nanofiber cathode. Chem Mater 28(3):896–905

Bauer I, Thieme S, Brückner J, Althues H, Kaskel S (2014) Reduced polysulfide shuttle in lithium–sulfur batteries using Nafion-based separators. J Power Sources 251:417–422

Yu X, Joseph J, Manthiram A (2015) Polymer lithium–sulfur batteries with a Nafion membrane and an advanced sulfur electrode. J Mater Chem A. 3(30):15683–15691

Ceylan Cengiz E, Erdol Z, Sakar B, Aslan A, Ata A, Ozturk O et al (2017) Investigation of the effect of using Al2O3–Nafion barrier on room-temperature Na–S batteries. J Phys Chem C 121(28):15120–15126

Kim I, Park J-Y, Kim CH, Park J-W, Ahn J-P, Ahn J-H et al (2016) A room-temperature Na/S battery using a β″ alumina solid electrolyte separator, tetraethylene glycol dimethyl ether electrolyte, and a S/C composite cathode. J Power Sources 301:332–337

Yu X, Manthiram A (2014) Highly reversible room-temperature sulfur/long-chain sodium polysulfide batteries. J Phys Chem Lett. 5(11):1943–1947

Yang Y, Zheng G, Cui Y (2013) A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage. Energy Environ Sci 6(5):1552

Abraham KM, Rauh RD, Brummer SB (1978) A low temperature NaS battery incorporating a soluble S cathode. Electrochim Acta 23:501–507

Rauh RD, Abraham KM, Pearson GF, Surprenant JK, Brummer SB (1979) A lithium/dissolved sulfur battery with an organic electrolyte. J Electrochem Soc 126(4):523–527

Yu X, Manthiram A (2014) Room-temperature sodium–sulfur batteries with liquid-phase sodium polysulfide catholytes and binder-free multiwall carbon nanotube fabric electrodes. J Phys Chem C 118(40):22952–22959

Li N, Weng Z, Wang Y, Li F, Cheng H-M, Zhou H (2014) An aqueous dissolved polysulfide cathode for lithium–sulfur batteries. Energy Environ Sci 7(10):3307–3312

Licht S. Sulfur/aluminum electrochemical batteries. Google Patents 1996

Licht S, Hwang J, Light TS, Dillon R (1997) The low current domain of the aluminum/sulfur battery. J Electrochem Soc 144(3):948–955

Kim JG, Son B, Mukherjee S, Schuppert N, Bates A, Kwon O et al (2015) A review of lithium and non-lithium based solid state batteries. J Power Sources 282:299–322

Hartmann P, Leichtweiss T, Busche MR, Schneider M, Reich M, Sann J et al (2013) Degradation of NASICON-type materials in contact with lithium metal: formation of mixed conducting interphases (MCI) on solid electrolytes. J Phys Chem C 117(41):21064–21074

Richards WD, Miara LJ, Wang Y, Kim JC, Ceder G (2016) Interface stability in solid-state batteries. Chem Mater 28(1):266–273

Zhu Y, He X, Mo Y (2016) First principles study on electrochemical and chemical stability of solid electrolyte-electrode interfaces in all-solid-state Li-ion batteries. J Mater Chem A 4(9):3253–3266

Schwoebel A, Hausbrand R, Jaegermann W (2015) Interface reactions between LiPON and lithium studied by in situ X-ray photoemission. Solid State Ion 273:51–54

Ma C, Cheng Y, Yin K, Luo J, Sharafi A, Sakamoto J et al (2016) Interfacial stability of Li metal-solid electrolyte elucidated via in situ electron microscopy. Nano Lett 16(11):7030–7036

Bachman JC, Muy S, Grimaud A, Chang HH, Pour N, Lux SF et al (2016) Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem Rev 116(1):140–162

Chen R, Qu W, Guo X, Li L, Wu F (2016) The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons. Mater Horiz 3(6):487–516

Park C-W, Ryu H-S, Kim K-W, Ahn J-H, Lee J-Y, Ahn H-J (2007) Discharge properties of all-solid sodium–sulfur battery using poly (ethylene oxide) electrolyte. J Power Sources 165(1):450–454

Kummer JT, Weber N (1976) A sodium–sulfur secondary battery. SAE Technical Paper 670179

Kummer JT, Weber N (1968) Battery having a molten alkali metal anode and a molten sulfur cathode patent US3413150. 1968 Nov. 26

Fally P (1973) Some aspects of sodium–sulfur cell operation. J Electrochem Soc. 120(10):1292–1295

Whittingham MS, Huggins RA (1971) Measurement of sodium ion transport in beta alumina using reversible solid electrodes. J Chem Phys 54(1):414–416

NAS Energy Storage System (2017) Cited 2017 February 20. Available from: https://ngk.co.jp . Accessed 20 Feb 2017

Aurbach D, Zinigrad E, Cohen Y, Teller H (2002) A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ion 148:405–416

Kim H, Jeong G, Kim YU, Kim JH, Park CM, Sohn HJ (2013) Metallic anodes for next generation secondary batteries. Chem Soc Rev 42(23):9011–9034

Younesi R, Veith GM, Johansson P, Edström K, Vegge T (2015) Lithium salts for advanced lithium batteries: Li–metal, Li–O2, and Li–S. Energy Environ Sci 8(7):1905–1922

Zhang W-J (2011) A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J Power Sources 196(1):13–24

Brückner J, Thieme S, Böttger-Hiller F, Bauer I, Grossmann HT, Strubel P et al (2014) Carbon-based anodes for lithium sulfur full cells with high cycle stability. Adv Func Mater 24(9):1284–1289

Hassoun J, Kim J, Lee D-J, Jung H-G, Lee S-M, Sun Y-K et al (2012) A contribution to the progress of high energy batteries: a metal-free, lithium-ion, silicon–sulfur battery. J Power Sources 202:308–313

Yan Y, Yin Y-X, Xin S, Su J, Guo Y-G, Wan L-J (2013) High-safety lithium–sulfur battery with prelithiated Si/C anode and ionic liquid electrolyte. Electrochim Acta 91:58–61

Agostini M, Hassoun J, Liu J, Jeong M, Nara H, Momma T et al (2014) A lithium-ion sulfur battery based on a carbon-coated lithium–sulfide cathode and an electrodeposited silicon-based anode. ACS Appl Mater Interfaces 6(14):10924–10928

Agostini M, Hassoun J (2015) A lithium-ion sulfur battery using a polymer, polysulfide-added membrane. Sci Rep. 5:7591

Zhang X, Wang W, Wang A, Huang Y, Yuan K, Yu Z et al (2014) Improved cycle stability and high security of Li–B alloy anode for lithium–sulfur battery. J Mater Chem A 2(30):11660

Available from: http://www.cytech.com/products-ips . 2017. Cited 2017 March 19

Available from: http://www.st.com/content/st_com/en/products/power-management/battery-management-ics/enfilm-thin-film-batteries/efl700a39.html . 2017. Cited 2017 March 2017

Yu J, Hu YS, Pan F, Zhang Z, Wang Q, Li H et al (2017) A class of liquid anode for rechargeable batteries with ultralong cycle life. Nat Commun 8:14629

Zhao-Karger Z, Zhao X, Wang D, Diemant T, Behm RJ, Fichtner M (2015) Performance improvement of magnesium sulfur batteries with modified non-nucleophilic electrolytes. Adv Energy Mater 5(3):1401155

Cheek GT, O’Grady WE, El Abedin SZ, Moustafa EM, Endres F (2008) Studies on the electrodeposition of magnesium in ionic liquids. J Electrochem Soc 155(1):D91

Zhao Q, Hu Y, Zhang K, Chen J (2014) Potassium-sulfur batteries: a new member of room-temperature rechargeable metal-sulfur batteries. Inorg Chem 53(17):9000–9005

Lu X, Bowden ME, Sprenkle VL, Liu J (2015) A low cost, high energy density, and long cycle life potassium-sulfur battery for grid-scale energy storage. Adv Mater 27(39):5915–5922