Cavity quantum electrodynamics in the ultrastrong coupling regime

Scientia Iranica - Tập 18 - Trang 820-826 - 2011
E. Ahmadi1, H.R. Chalabi1, A. Arab1, S. Khorasani1
1School of Electrical Engineering, Sharif University of Technology, Tehran, P.O. Box 11155-9363, Iran

Tài liệu tham khảo

Jaynes, 1963, Comparison of quantum and semiclassical radiation theories with applications to the beam maser, Proc. IEEE, 51, 89, 10.1109/PROC.1963.1664 Paul, 1963, Induzierte emission bei starker einstrahlung, Ann. Phys. (Leipzig), 11, 411, 10.1002/andp.19634660710 Shore, 1993, Topical review: the Jaynes–Cummings model, J. Modern Opt., 40, 1195, 10.1080/09500349314551321 Schleich, 2000 Bulovic, 1998, Weak microcavity effects in organic light-emitting devices, Phys. Rev. B, 58, 3730, 10.1103/PhysRevB.58.3730 Fletcher, 2000, Spectral properties of resonant-cavity, polyfluorene light-emitting diodes, Appl. Phys. Lett., 77, 1262, 10.1063/1.1287402 Stevenson, 2006, A semiconductor source of triggered entangled photon pairs, Nature, 439, 179, 10.1038/nature04446 Salter, 2010, An entangled-light-emitting diode, Nature, 465, 594, 10.1038/nature09078 Peter, 2005, Exciton–photon strong-coupling regime for a single quantum dot embedded in a microcavity, Phys. Rev. Lett., 95, 067401, 10.1103/PhysRevLett.95.067401 Yamamoto, 2000 Reithmaier, 2008, Strong exciton–photon coupling in semiconductor quantum dot systems, Semicond. Sci. Technol., 23, 123001, 10.1088/0268-1242/23/12/123001 2007 Moreau, 2001, Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities, Appl. Phys. Lett., 79, 2865, 10.1063/1.1415346 Santori, 2002, Indistinguishable photons from a single-photon device, Nature, 419, 594, 10.1038/nature01086 Gisin, 2002, Quantum cryptography, Rev. Modern Phys., 74, 145, 10.1103/RevModPhys.74.145 Knill, 2001, A scheme for efficient quantum computation with linear optics, Nature, 409, 46, 10.1038/35051009 Dur, 1999, Quantum repeaters based on entanglement purification, Phys. Rev. A, 59, 169, 10.1103/PhysRevA.59.169 Thompson, 1992, Observation of normal-mode splitting for an atom in an optical cavity, Phys. Rev. Lett., 68, 1132, 10.1103/PhysRevLett.68.1132 Reithmarier, 2004, Strong coupling in a single quantum dot-semiconductor microcavity system, Nature, 432, 197, 10.1038/nature02969 Akahane, 2003, High-Q photonic nanocavity in a two-dimensional photonic crystal, Nature, 425, 944, 10.1038/nature02063 Vuckovic, 2003, Photonic crystal microcavities for cavity quantum electrodynamics with a single quantum dot, Appl. Phys. Lett., 82, 2374, 10.1063/1.1567824 Sodagar, 2009, Exciton–photon interaction in a quantum dot embedded in a photonic microcavity, J. Phys. B: At. Mol. Opt. Phys., 42, 085402, 10.1088/0953-4075/42/8/085402 Press, 2007, Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime, Phys. Rev. Lett., 98, 117402, 10.1103/PhysRevLett.98.117402 Mosor, 2005, Scanning a photonic crystal slab nanocavity by condensation of xenon, Appl. Phys. Lett., 87, 141105, 10.1063/1.2076435 Hennessy, 2007, Quantum nature of a strongly coupled single quantum dot-cavity system, Nature, 445, 896, 10.1038/nature05586 Laucht, 2009, Electrical control of spontaneous emission and strong coupling for a single quantum dot, New J. Phys., 11, 023034, 10.1088/1367-2630/11/2/023034 Kistner, 2008, Demonstration of strong coupling via electro-optical tuning in high-quality QD-micropillar systems, Opt. Express, 16, 15006, 10.1364/OE.16.015006 Sadeghi, 2010, Interaction of quantum dot molecules with multi-mode radiation fields, Sci. Iranica, Trans. D: Comput. Sci. Eng. Electr. Eng., 17, 59 Khitrova, 2006, Vacuum rabi splitting in semiconductors, Nature Phys., 2, 81, 10.1038/nphys227 Ciuti, 2005, Quantum vacuum properties of the intersubband cavity polariton field, Phys. Rev. B, 72, 115303, 10.1103/PhysRevB.72.115303 Todorov, 2010, Ultrastrong light-matter coupling regime with polariton dots, Phys. Rev. Lett., 105, 196402, 10.1103/PhysRevLett.105.196402 Ciuti, 2006, Input–output theory of cavities in the ultrastrong coupling regime: the case of time-independent cavity parameters, Phys. Rev. A, 74, 033811, 10.1103/PhysRevA.74.033811 De Liberato, 2007, Quantum vacuum radiation spectra from a semiconductor microcavity with a time-modulated vacuum Rabi frequency, Phys. Rev. Lett., 98, 103602, 10.1103/PhysRevLett.98.103602 De Liberato, 2009, Extracavity quantum vacuum radiation from a single qubit, Phys. Rev. A, 80, 053810, 10.1103/PhysRevA.80.053810 Günter, 2009, Sub-cycle switch-on of ultrastrong light-matter interaction, Nature, 458, 178, 10.1038/nature07838 Anappara, 2009, Signatures of the ultrastrong light-matter coupling regime, Phys. Rev. B, 79, 201303(R), 10.1103/PhysRevB.79.201303 Hagenmüller, 2010, Ultrastrong coupling between a cavity resonator and the cyclotron transition of a two-dimensional electron gas in the case of an integer filling factor, Phys. Rev. B, 81, 235303, 10.1103/PhysRevB.81.235303 Niemczyk, 2010, Circuit quantum electrodynamics in the ultrastrong-coupling regime, Nat. Phys., 6, 772, 10.1038/nphys1730 Casanova, 2010, Deep strong coupling regime of the Jaynes–Cummings model, Phys. Rev. Lett., 105, 263603, 10.1103/PhysRevLett.105.263603 Ahmadi, E., Chalabi, H.R., Arab, A. and Khorasani, S. “Revisiting the Jaynes–Cummings–Paul model in the limit of very strong coupling”, Proc. SPIE 7946, 79461W (2011).