Cavitation in water: a review
Tóm tắt
Từ khóa
Tài liệu tham khảo
[1] Reid, R.C. Superheated liquids, Amer. Sci., Volume 64 (1976), pp. 146-156
[2] Trevena, D.H. Cavitation and Tension in Liquids, Adam Hilger, Bristol, Philadelphia, 1987
[3] Avedisian, C.T. The homogeneous nucleation limits of liquids, J. Phys. Chem. Ref. Data, Volume 14 (1985), pp. 695-729
[4] Debenedetti, P.G. Metastable Liquids, Princeton Univ. Press, Princeton, NJ, 1996
[5] Leighton, T.G. The Acoustic Bubble, Academic Press, London, 1994
[6] Brennen, C.E. Cavitation and Bubble Dynamics, Oxford Univ. Press, New York, 1995 http://resolver.caltech.edu/CaltechBOOK:1995.001 (also available at)
[7] Franc, J.-P.; Michel, J.-M. Fundamentals of Cavitation, Kluwer Academic Publishers, Dordrecht, Boston, London, 2004
[9] Oxtoby, D.W. Homogeneous nucleation: theory and experiment, J. Phys.: Condens. Matter, Volume 4 (1992), pp. 7627-7650
[10] H.J. Maris, Theory of nucleation, C. R. Physique, this issue,
[12] S. Balibar, F. Caupin, Nucleation of crystals from their liquid phase, C. R. Physique,
[13] Pettersen, M.S.; Balibar, S.; Maris, H.J. Experimental investigation of cavitation in superfluid 4He, Phys. Rev. B, Volume 49 (1994), pp. 12062-12070
[14] Cahn, J.W.; Hilliard, J.E. Free energy of a nonuniform system. III. Nucleation in a two-component incompressible fluid, J. Chem. Phys., Volume 31 (1959), pp. 688-699
[15] Caupin, F. Liquid–vapor interface, cavitation, and the phase diagram of water, Phys. Rev. E, Volume 71 (2005) no. 1–5, p. 051605
[16] Speedy, R.J. Stability-limit conjecture. An interpretation of the properties of water, J. Phys. Chem., Volume 86 (1982), pp. 982-991
[17] Caupin, F.; Balibar, S.; Maris, H.J. Anomaly in the stability limit of liquid helium 3, Phys. Rev. Lett., Volume 87 (2001) 145302 (1–4)
[18] Poole, P.H.; Sciortino, F.; Essmann, U.; Stanley, H.E. Spinodal of liquid water, Phys. Rev. E, Volume 48 (1993), pp. 3799-3817
[19] Netz, P.A.; Starr, F.W.; Stanley, H.E.; Barbosa, M.C. Static and dynamic properties of stretched water, J. Chem. Phys., Volume 115 (2001), pp. 344-348
[20] Yamada, M.; Mossa, S.; Stanley, H.E.; Sciortino, F. Interplay between time–temperature transformation and the liquid–liquid phase transition in water, Phys. Rev. Lett., Volume 88 (2002) 195701 (1–4)
[21] Debenedetti, P.G. Supercooled and glassy water, J. Phys.: Condens. Matter, Volume 15 (2003), p. R1669-R1726
[22] J.-A. De Luc, Introduction à la physique terrestre par les fluides expansibles, Paris, 1803, p. 93
[23] Donny, F. Mémoire sur la cohésion des liquides, et sur leur adhérence aux corps solides, Ann. Chim. Phys., Volume 16 (1846), pp. 167-190
[24] Kenrick, F.B.; Gilbert, C.S.; Wismer, K.L. The superheating of liquids, J. Phys. Chem., Volume 28 (1924), pp. 1297-1307
[25] Briggs, L.J. Maximum superheating of water as a measure of negative pressure, J. Appl. Phys., Volume 26 (1955), pp. 1001-1003
[26] Brereton, G.J.; Crilly, R.J.; Spears, J.R. Nucleation in small capillary tubes, Chem. Phys., Volume 230 (1998), pp. 253-265
[27] Dufour, M.L.; Dufour, M.L. Sur l'ébullition des liquides, C. R. Acad. Sci., Volume 52 (1861), pp. 986-989
[28] Moore, G.R. Vaporization of superheated drops in liquids, AIChE J., Volume 5 (1959), pp. 458-466
[29] Wakeshima, H.; Takata, K. On the limit of superheat, J. Phys. Soc. Japan, Volume 13 (1958), pp. 1398-1403
[30] Apfel, R.E. Vapor nucleation at a liquid–liquid interface, J. Chem. Phys., Volume 54 (1971), pp. 62-63
[31] Blander, M.; Hengstenberg, D.; Katz, J.L. Bubble nucleation in n-pentane, n-hexane, n-pentane + hexadecane mixtures, and water, J. Phys. Chem., Volume 75 (1971), pp. 3613-3619
[32] Apfel, R.E. Water superheated to 279.5 °C at atmospheric pressure, Nature Phys. Sci., Volume 238 (1972), pp. 63-64
[33] Pavlov, P.A.; Skripov, V.P. Kinetics of spontaneous nucleation in strongly heated liquids, High Temp. (USSR), Volume 8 (1970), pp. 540-545 (translated from Teplofiz. Vys. Temp., 8, 1970, pp. 579-585)
[34] Skripov, V.P.; Pavlov, P.A. Explosive boiling of liquids and fluctuation nucleus formation, High Temp. (USSR), Volume 8 (1970), pp. 782-787 (translated from Teplofiz. Vys. Temp., 8, 1970, pp. 833-839)
[35] Derewnicki, K.P. Experimental studies of heat transfer and vapour formation in fast transient boiling, Int. J. Heat. Mass Trans., Volume 28 (1985), pp. 2085-2092
[36] Glod, S.; Poulikakos, D.; Zhao, Z.; Yadigaroglu, G. An investigation of microscale explosive vaporization of water on an ultrathin Pt wire, Int. J. Heat. Mass Trans., Volume 45 (2002), pp. 367-379
[37] Iida, Y.; Okuyama, K.; Sakurai, K. Boiling nucleation on a very small film heater subjected to extremely rapid heating, Int. J. Heat. Mass Trans., Volume 37 (1994), pp. 2771-2780
[38] Avedisian, C.T.; Osborne, W.S.; McLeod, F.D.; Curley, C.M. Measuring bubble nucleation temperature on the surface of a rapidly heated thermal ink-jet heater immersed in a pool of water, Proc. R. Soc. London A, Volume 455 (1999), pp. 3875-3899
[39] Thomas, O.C.; Cavicchi, R.E.; Tarlov, M.J. Effect of surface wettability on fast transient microboiling behavior, Langmuir, Volume 19 (2003), pp. 6168-6177
[40] Okuyama, K.; Tsukahara, S.; Morita, N.; Iida, Y. Transient behavior of boiling bubbles generated on the small heater of a thermal ink jet printhead, Exp. Therm. Fluid Sci., Volume 28 (2004), pp. 825-834
[41] Kafalas, P.; Ferdinand, A.P. Jr. Fog droplet vaporization and fragmentation by a 10.6-μm laser pulse, Appl. Opt., Volume 12 (1973), pp. 29-33
[42] Pinnick, R.G.; Biswas, A.; Armstrong, R.L.; Jennings, S.G.; Pendleton, J.D.; Fernandez, G. Micron-sized droplets irradiated with a pulsed CO2 laser: measurement of explosion and breakdown thresholds, Appl. Opt., Volume 29 (1990), pp. 918-925
[43] Kudryashov, S.I.; Lyon, K.; Allen, S.D. Photoacoustic study of relaxation dynamics in multibubble systems in laser-superheated water, Phys. Rev. E, Volume 73 (2006) 055301(R) (1–4)
[44] Yavas, O.; Leiderer, P.; Park, H.K.; Grigoropoulos, C.P.; Poon, C.C.; Leung, W.P.; Do, N.; Tam, A.C. Optical reflectance and scattering studies of nucleation and growth of bubbles at a liquid–solid interface induced by pulsed laser heating, Phys. Rev. Lett., Volume 70 (1993), pp. 1830-1833
[45] Park, H.K.; Grigoropoulos, C.P.; Poon, C.C.; Tam, A.C. Optical probing of the temperature transients during pulsed–laser induced boiling of liquids, Appl. Phys. Lett., Volume 68 (1993) no. 1996, pp. 596-598
[46] Yavas, O.; Schilling, A.; Bischof, J.; Boneberg, J.; Leiderer, P. Bubble nucleation and pressure generation during laser cleaning of surfaces, Appl. Phys. A, Volume 64 (1997), pp. 331-339
[47] Reynolds, O. On the internal cohesion of liquids and the suspension of a column of mercury to a height more than double that of the barometer (1877), Scientific Papers on Mechanical and Physical Subject, vol. I, Cambridge Univ. Press, Cambridge, 1900, pp. 231-243 (Chapter 31)
[48] Reynolds, O. Some further experiments on the cohesion of water and mercury (1880–81), Scientific Papers on Mechanical and Physical Subject, vol. I, Cambridge Univ. Press, Cambridge, 1900, pp. 394-398 (Chapter 35)
[49] Huygens, C. Extrait d'une lettre de M. Hugens de l'Académie Royale des Sciences à l'auteur de ce journal, touchant les phénomènes de l'eau purgée d'air, J. des Sçavants, 25 juillet 1672, Phil. Trans., Volume 7 (1672), pp. 5027-5030 (partial English translation:)
[50] Kell, G.S. Early observations of negative pressures in liquids, Am. J. Phys., Volume 51 (1983), pp. 1038-1041
[51] Hayward, A.T.J. The role of stabilized gas nuclei in hydrodynamic cavitation inception, J. Phys. D, Volume 3 (1970), pp. 574-579
[52] Hayward, A.T.J. Mechanical pump with a suction lift of 17 metres, Nature, Volume 225 (1970), pp. 376-377
[53] Bubble and Spark Chambers: Principles and Use (Shutt, R.P., ed.), Academic Press, New York, London, 1967
[54] Reynolds, O. Experiments showing the boiling of water in an open tube at ordinary temperatures (1894), Scientific Papers on Mechanical and Physical Subject, vol. II, Cambridge Univ. Press, Cambridge, 1900, pp. 578-587 (Chapter 63)
[55] Berthelot, M. Sur quelques phénomènes de dilatation forcée des liquides, Ann. Chim. Phys., Volume 30 (1850), pp. 232-237
[56] Dixon, H.H.; Joly, J. On the ascent of sap, Phil. Trans. Roy. Soc. B, Volume 186 (1895), pp. 563-576
[57] Dixon, H.H. Note on the tensile strength of water, Sci. Proc. Roy. Dublin Soc., Volume 12 (1909), pp. 60-65
[58] Vincent, R.S. Measurement of tension in liquids by means of a metal bellows, Proc. Roy. Soc., Volume 53 (1941), pp. 126-140
[59] Vincent, R.S.; Simmonds, G.H. Examination of the Berthelot method to study tension in liquids, Proc. Roy. Soc., Volume 55 (1943), pp. 376-382
[60] Temperley, H.N.V.; Chambers, LL.G. The behaviour of water under hydrostatic tension: I, Proc. Phys. Soc., Volume 58 (1946), pp. 420-436
[61] Temperley, H.N.V. The behaviour of water under hydrostatic tension: II, Proc. Phys. Soc., Volume 58 (1946), pp. 436-443
[62] Temperley, H.N.V. The behaviour of water under hydrostatic tension: III, Proc. Phys. Soc., Volume 59 (1947), pp. 199-208
[63] Scott, A.F.; Shoemaker, D.P.; Tanner, K.N.; Wendel, J.G. Study of the Berthelot method for determining the tensile strength of a liquid, J. Chem. Phys., Volume 16 (1948), pp. 495-502
[64] Lewis, G.M. The tensile strength of liquids in Berthelot tubes, Proc. Phys. Soc., Volume 78 (1961), pp. 133-144
[65] Rees, E.P.; Trevena, D.H. A study of the Berthelot method of measuring tensions in liquids, Brit. J. Appl. Phys., Volume 17 (1961) no. 1966, pp. 671-674
[66] Worthington, A.M. On the mechanical stretching of liquids: an experimental determination of the volume-extensibility of ethyl alcohol, Phil. Trans. Roy. Soc. A, Volume 183 (1892), pp. 355-370
[67] Meyer, J. Zur Kenntnis des negativen Druckes in Flüssigkeiten, Abhandl. d. Deutsch. Bunsen–Gessellschaft, Volume 6 (1911), pp. 1-53
[68] Henderson, S.J.; Speedy, R.J. A Berthelot–Bourdon tube method for studying water under tension, J. Phys. E: Sci. Instrum., Volume 13 (1980), pp. 778-782
[69] Henderson, S.J.; Speedy, R.J. Temperature of maximum density in water at negative pressure, J. Phys. Chem., Volume 91 (1987), pp. 3062-3068
[70] Evans, A. A transparent recording Berthelot tensiometer, J. Phys. E: Sci. Instrum., Volume 12 (1979), pp. 276-281
[71] Chapman, P.J.; Richards, B.E.; Trevena, D.H. Monitoring the growth of tension in a liquid contained in a Berthelot tube, J. Phys. E: Sci. Instrum., Volume 8 (1975), pp. 731-735
[72] Jones, W.M.; Overton, G.D.N.; Trevena, D.H. Tensile strength experiments with water using a new type of Berthelot tube, J. Phys. D: Appl. Phys., Volume 14 (1981), pp. 1283-1291
[73] Hiro, K.; Ohde, Y.; Tanzawa, Y. Stagnations of increasing trends in negative pressure with repeated cavitation in water/metal Berthelot tubes as a result of mechanical sealing, J. Phys. D: Appl. Phys., Volume 36 (2003), pp. 592-597
[74] Roedder, E. Metastable superheated ice in liquid–water inclusions under high negative pressure, Science, Volume 155 (1967), pp. 1413-1417
[75] Green, J.L.; Durben, D.J.; Wolf, G.H.; Angell, C.A. Water and solutions at negative pressure: Raman spectroscopic study to −80 megapascals, Science, Volume 249 (1990), pp. 649-652
[76] Zheng, Q.; Durben, D.J.; Wolf, G.H.; Angell, C.A. Liquids at large negative pressures: water at the homogeneous nucleation limit, Science, Volume 254 (1991), pp. 829-832
[77] Alvarenga, A.D.; Grimsditch, M.; Bodnar, R.J. Elastic properties of water under negative pressures, J. Chem. Phys., Volume 98 (1993), pp. 8392-8396
[78] Zheng, Q.; Green, J.; Kieffer, J.; Poole, P.H.; Shao, J.; Wolf, G.H.; Angell, C.A. Limiting tensions for liquids and glasses from laboratory and MD studies, Budapest, 2002 (Imre, A.R.; Maris, H.J.; Williams, P.R., eds.) (NATO Science Series, Series II: Mathematics, Physics and Chemistry), Volume vol. 84, Kluwer, Dordrecht (2002), pp. 33-46
[79] Takahashi, M.; Izawa, E.; Etou, J.; Ohtani, T. Kinetic characteristic of bubble nucleation in superheated water using fluid inclusions, J. Phys. Soc. Japan, Volume 71 (2002), pp. 2174-2177
[80] O. Reynolds, cited in Ref. [66]
[81] Briggs, L.J. Limiting negative pressure of water, J. Appl. Phys., Volume 21 (1950), pp. 721-722
[82] Strube, H.W.; Lauterborn, W. Untersuchung der Kavitationskeime an der Grenzfläche Quarzglas–Wasser nach der Zentrifugenmethode, Z. Angew. Phys., Volume 29 (1970), pp. 349-357
[83] Sedgewick, S.A.; Trevena, D.H. Limiting negative pressure of water under dynamic stressing, J. Phys. D: Appl. Phys., Volume 9 (1976), pp. 1983-1990
[84] Williams, P.R.; Williams, R.L. On anomalously low values of the tensile strength of water, Proc. Roy. Soc. London A, Volume 456 (2000), pp. 1321-1332
[85] Marston, P.L.; Unger, B.T. Rapid cavitation induced by the reflection of shock waves, July 22–25, 1985, Spokane, Washington (Gupta, Y.M., ed.), Plenum Press, New York (1986), pp. 401-405
[86] Boteler, J.M.; Sutherland, G.T. Tensile failure of water due to shock wave interactions, J. Appl. Phys., Volume 96 (2004), pp. 6919-6924
[87] Wurster, C.; Köhler, M.; Pecha, R.; Eisenmenger, W.; Suhr, D.; Irmer, U.; Brümmer, F.; Hülser, D. Berlin, 1995 (Herbertz, J., ed.), Universität Duisburg–Essen, Duisburg (1995), pp. 635-638 (Part 1)
[88] Staudenraus, J.; Eisenmenger, W. Fibre-optic probe hydrophone for ultrasonic and shock-wave measurements in water, Ultrasonics, Volume 31 (1993), pp. 267-273
[89] R. Pecha, Private communication
[90] Galloway, W.J. An experimental study of acoustically induced cavitation in liquids, J. Acoust. Soc. Am., Volume 26 (1954), pp. 849-857
[91] Greenspan, M.; Tschiegg, C.E. Radiation-induced acoustic cavitation apparatus and some results, J. Res. Nat. Bur. Stand. C, Volume 71 (1967), pp. 299-312
[92] Herbert, E.; Balibar, S.; Caupin, F. Cavitation pressure in water, Phys. Rev. E, Volume 74 (2006) 041603 (1–22)
[93] Finch, R.D. Influence of radiation on the cavitation threshold of degassed water, J. Acoust. Soc. Am., Volume 36 (1964), pp. 2287-2292
[94] W.J. Galloway, Private communication to R.D. Finch, Ref. 6 of Ref. [93]
[96] Winnick, J.; Cho, S.J. PVT behavior of water at negative pressures, J. Chem. Phys., Volume 55 (1971), pp. 2092-2097
[97] Macdonald, J.R. Reconsideration of an experiment on water under negative pressure, J. Chem. Phys., Volume 57 (1972), pp. 3793-3802
[98] Winnick, J.; Cho, S.J. Erratum: PVT behavior of water at negative pressures, J. Chem. Phys., Volume 57 (1972), p. 1018
[99] Huang, H.S.; Guell, D.L.; Winnick, J. PVT behavior of water at negative pressures: capillary tube deformation effects, J. Chem. Phys., Volume 59 (1973), pp. 6191-6192
[100] Volmer, M. Über Keimbildung und Keimwirkung als Spezialfälle der heterogenen Katalyse, Z. Elektrochem., Volume 35 (1929), pp. 555-561
[101] Jarvis, T.J.; Donohue, M.D.; Katz, J.L. Bubble nucleation mechanisms of liquid droplets superheated in other liquids, J. Colloid Interface Sci., Volume 50 (1975), pp. 359-368
[103] Epstein, P.S.; Plesset, M.S. On the stability of gas bubbles in liquid–gas solutions, J. Chem. Phys., Volume 18 (1950), pp. 1505-1509
[104] Atchley, A.A.; Prosperetti, A. The crevice model of bubble nucleation, J. Acoust. Soc. Am., Volume 86 (1989), pp. 1065-1084
[105] Harvey, E.N.; Whiteley, A.H.; McElroy, W.D.; Pease, D.C.; Barnes, D.K. Bubble formation in animals, II. Gas nuclei and their distribution in blood and tissues, J. Cell. Comp. Physiol., Volume 24 (1944), pp. 23-34
[106] Fox, F.E.; Herzfeld, K.F. Gas bubbles with organic skin as cavitation nuclei, J. Acoust. Soc. Am., Volume 26 (1954), pp. 984-989
[107] Yount, D.E.; Gillary, E.Q.; Hoffman, D.C. A microscopic investigation of bubble formation nuclei, J. Acoust. Soc. Am., Volume 76 (1984), pp. 1511-1521
[108] Bremond, N.; Arora, M.; Ohl, C.-D.; Lohse, D. Cavitation on surfaces, J. Phys.: Condens. Matter, Volume 17 (2005), p. S3603-S3608
[109] Bremond, N.; Arora, M.; Ohl, C.-D.; Lohse, D. Controlled multibubble surface cavitation, Phys. Rev. Lett., Volume 96 (2006) 224501 (1–4)
[110] Tyree, M.T.; Zimmermann, M.H. Xylem Structure and the Ascent of Sap, Springer-Verlag, Berlin, Heidelberg, New York, 2002
[111] H. Cochard, Cavitation in trees, C. R. Physique, this issue,
[112] Versluis, M.; Schmitz, B.; von der Heydt, A.; Lohse, D. How snapping shrimp snap: through cavitating bubbles, Science, Volume 289 (2000), pp. 2114-2117
[113] Patek, S.N.; Korff, W.L.; Caldwell, R.L. Deadly strike mechanism of a mantis shrimp, Nature, Volume 428 (2004), pp. 819-820
[114] Patek, S.N.; Caldwell, R.L. Extreme impact and cavitation forces of a biological hammer: strike forces of the peacock mantis shrimp Odontodactylus scyllarus, J. Exp. Biol., Volume 208 (2005), pp. 3655-3664
[115] Unger, E.C.; Porter, T.; Culp, W.; Labell, R.; Matsunaga, T.; Zutshi, R. Therapeutic applications of lipid-coated microbubbles, Adv. Drug Deliv. Rev., Volume 56 (2004), pp. 1291-1314
[116] Balss, K.M.; Avedisian, C.T.; Cavicchi, R.E.; Tarlov, M.J. Nanosecond imaging of microboiling behavior on pulsed-heated Au films modified with hydrophilic and hydrophobic self-assembled monolayers, Langmuir, Volume 21 (2005), pp. 10459-10467
[117] Avedisian, C.T.; Cavicchi, R.E.; Tarlov, M.J. New technique for visualizing microboiling phenomena and its application to water pulse heated by a thin metal film, Rev. Sci. Instrum., Volume 77 (2006) 063706 (1-7)
[118] Sheridan, M.F.; Wohletz, K.H. Hydrovolcanism: basic considerations and review, J. Volcano. Geotherm. Res., Volume 17 (1983), pp. 1-29
[119] Kadota, T.; Yamasaki, H. Recent advances in the combustion of water fuel emulsion, Prog. Energy Comb. Sci., Volume 28 (2002), pp. 385-404
[120] Armas, O.; Ballesteros, R.; Martos, F.J.; Agudelo, J.R. Characterization of light duty Diesel engine pollutant emissions using water-emulsified fuel, Fuel, Volume 84 (2005), pp. 1011-1018
[121] Lin, C.-Y.; Chen, L.-W. Engine performance and emission characteristics of three-phase diesel emulsions prepared by an ultrasonic emulsification method, Fuel, Volume 85 (2006), pp. 593-600
[122] Nadeem, M.; Rangkuti, C.; Anuar, K.; Haq, M.R.U.; Tan, I.B.; Shah, S.S. Diesel engine performance and emission evaluation using emulsified fuels stabilized by conventional and gemini surfactants, Fuel, Volume 85 (2006), pp. 2111-2119
[124] Cravotto, G.; Cintas, P. Power ultrasound in organic synthesis: moving cavitational chemistry from academia to innovative and large–scale applications, Chem. Soc. Rev., Volume 35 (2006), pp. 180-196
