Causative organisms and outcomes of peritoneal dialysis-related peritonitis in Sarawak General Hospital, Kuching, Malaysia: a 3-year analysis
Tóm tắt
Peritoneal dialysis peritonitis remains a significant cause of morbidity for peritoneal dialysis patients and the main reason for conversion from peritoneal dialysis to hemodialysis. As the characteristics of patients and microbial susceptibility vary from center to center, the aim of this study is to evaluate the microbiology and the clinical outcomes among continuous ambulatory peritoneal dialysis patients in Kuching, Malaysia. This is a retrospective record review of 82 continuous ambulatory peritoneal dialysis patients who developed peritonitis during 2013 to 2015. Data examined included patients’ demographic data, causative organisms, and outcomes. A total of 124 episodes of peritonitis were recorded, and the overall peritonitis rate was 0.40 episodes per patient-year. There was an increasing incidence in continuous ambulatory peritoneal dialysis peritonitis over the 3-year study period (0.35 to 0.47 episodes per patient-year). The gram-negative peritonitis rate increased over the period until towards the end of the study period, when gram-positive and gram-negative organisms accounted for almost equal proportions of peritonitis. Streptococcus sp. was the most common organism among the gram-positive peritonitis while Pseudomonas sp. was the most common organism in gram-negative peritonitis. The culture-negative peritonitis rate was 25.8%. The peritoneal dialysis catheter was removed in 32 episodes (26.6%). The catheter loss rate was significantly higher in gram-negative peritonitis, as compared to gram-positive peritonitis (38.9 vs 16.7%, p = 0.027). The increasing trend of peritonitis and high rates of culture negativity and peritoneal dialysis catheter removal are areas that need further evaluation and improvement in the future. Study on risk factors of continuous ambulatory peritoneal dialysis peritonitis, detailed microbiology, and antimicrobial treatment and response are warranted to further improve the outcomes of continuous ambulatory peritoneal dialysis patients.
Tài liệu tham khảo
Bargman JM. Advances in peritoneal dialysis: a review. Semin Dial. 2012;25:545–9.
USRDS: the United States Real Data System. Am J Kidney Dis. 2003; 42: Suppl 5:1-230
Szeto CC, Wong TY, Chow KM, Leung CB, Law MC, Wang AY. Impact of dialysis adequacy on the mortality and morbidity of anuric Chinese patients receiving continuous ambulatory peritoneal dialysis. J Am Soc Nephrol. 2001;12:355–60.
Han SH, Lee SC, Ahn SV, Lee JE, Choi HY, Kim BS, et al. Improving outcome of CAPD: twenty-five years’ experience in a single Korean center. Perit Dial Int. 2007;27:432–40.
Perez Font M, Rodriguez-Carmona A, Garcia-Naveiro R, Rosales M, Villaverde P, Valdes F. Peritonitis-related mortality in patients undergoing chronic peritoneal dialysis. Perit Dial Int. 2005;25:274–84.
Boudville N, Kemp A, Clayton P, Lim W, Badve SV, Hawley CM, et al. Recent peritonitis associates with mortality among patients treated with peritoneal dialysis. J Am Soc Nephrol. 2012;23:1398–405.
van Esch S, Krediet RT, Struijk DG. 32 years’ experience of peritoneal dialysis-related peritonitis in a university hospital. Perit Dial Int. 2014;34:162–70.
Lartundo JAQ, Palomar R, Dominguez-Diez A, Salas C, Ruiz-Criado J, Rodrigo E, et al. Microbiological profile of peritoneal dialysis peritonitis and predictors of hospitalization. Adv Perit Dial. 2011;27:38–42.
Ghali JR, Bannister KM, Brown FG, Rosman JB, Wiggins KJ, Johnson DW, et al. Microbiology and outcomes of peritonitis in Australian peritoneal dialysis patients. Perit Dial Int. 2011;31:651–62.
Li PK, Szeto CC, Piraino B, Arteaga J, Fan S, Figueiredo AE, et al. ISPD peritonitis recommendations: 2016 update on prevention and treatment. Perit Dial Int. 2016;36:481–508.
Higuchi C, Ito M, Masakane I, Sakura H. Peritonitis in peritoneal dialysis patients in Japan: a 2013 retrospective questionnaire survey of Japanese Society for Peritoneal Dialysis member institutions. Renal Replacement Therapy. 2016;2(2):1–8.
Prasad KN, Singh K, Rizwan A, Mishra P, Tiwari D, Prasad N, et al. Microbiology and outcomes of peritonitis in northern India. Perit Dial Int. 2014;34:188–94.
Kim DK, Yoo TH, Ryu DR, Xu ZG, Kim HJ, Choi KH, et al. Changes in causative organisms and their antimicrobial susceptibilities in CAPD peritonitis: a single center’s experience over one decade. Perit Dial Int. 2004;24:424–32.
Kanjanabuch T, Chancharoenthana W, Katavetin P, Sritippayawan S, Praditpornsilpa K, Ariyapitipan S, et al. The incidence of peritoneal dialysis-related infection in Thailand: a nationwide survey. J Med Assoc Thai. 2011;94:7–12.
Lee GS, Woo KT. Infection in continuous ambulatory peritoneal dialysis (CAPD): aetiology, complications and risk factors. Ann Acad Med Singapore. 1992;21:354–60.
Suhardjono. The development of a continuous ambulatory peritoneal dialysis program in Indonesia. Perit Dial Int. 2008;28 Suppl 3:59–62.
Goh BL, Ong LM, editors. Twenty second report of the Malaysian dialysis and transplant 2014, Kuala Lumpur. 2015.
Hyodo T, Hirawa N, Hayashi M, Than KMM, Tuyen DG, Pattanasittangkur K, et al. Present status of renal replacement therapy at 2015 in Asian countries (Myanmar, Vietnam, Thailand, China and Japan). Ren Replace Ther. 2017;3(11):1–14.
Nayak KS, Sinoj KA, Subhramanyam SV, Mary B, Rao NVV. Our experience of home visits in city and rural areas. Perit Dial Int. 2007;27 Suppl 2:27–31.
Zelenitsky S, Barns L, Findlay I, Alfa M, Ariano R, Fine A, Harding G. Analysis of microbiological trends in peritoneal dialysis-related peritonitis from 1991 to 1998. Am J Kidney Dis. 2000;36:1009–13.
Verger C, Ryckelynck JP, Duman M, Veniez G, Lobbedez T, Boulanger E, et al. French peritoneal dialysis registry (RDPLF): outline and main results. Kidney Int Suppl. 2006;103:S12–20.
Hsieh YP, Chang CC, Wang SC, Wen YK, Chiu PF, Yang Y. Predictor for and impact of high peritonitis rate in Taiwanese continuous ambulatory peritoneal dialysis patients. Int Urol Nephrol. 2015;47:183–9.
Bernardini J, Bender F, Florio T, Sloand J, Palmmontalbano L, Fried L, et al. Randomized, double-blind trial of antibiotic exit site cream for prevention of exit site infection in peritoneal dialysis patients. J Am Soc Nephrol. 2005;16:539–45.
Burkhalter F, Clemenger M, Haddoub SS, McGrory J, Hisole N, Brown E. Pseudomonas exit-site infection: treatment outcomes with topical gentamicin in addition to systemic antibiotics. Clin Kidney J. 2015;8(6):781–4.
Kocyigit I, Unal A, Karademir D, Bahcebasi S, Sipahioglu MH, Tokgoz B, et al. Improvement in culture-negative peritoneal dialysis-related peritonitis: a single center’s experience. Perit Dial Int. 2012;32:476–8.
Sewell DL, Golper TA, Hulman PB, Thomas CM, West LM, Kubey WY, et al. Comparison of large volume culture to other methods for isolation of microorganisms from dialysate. Perit Dial Int. 1990;10:49–52.
Szeto CC, Wong TYH, Chow KM, Leung CB, Li PKT. The clinical course of culture-negative peritonitis complicating peritoneal dialysis. Am J Kidney Dis. 2003;42:567–74.
Lee S, Kim H, Kim KH, Hann HJ, Ahn HS, Kim SJ, Kang DH, Choi KB, Ryu DR. Technique failure in Korean incident peritoneal dialysis patients: a national population-based study. Kidney Res Clin Pract. 2016;35:245–51.
Siva B, Hawley CM, McDonald SP, Brown FG, Rosman JB, Wiggins KJ, et al. Pseudomonas peritonitis in Australia: predictors, treatment, and outcomes in 191 cases. Clin J Am Soc Nephrol. 2009;4(5):957–64.
Jarvis EM, Hawley CM, McDonald SP, Brown FG, Rosman JB, Wiggins KJ, et al. Predictors, treatment, and outcomes of non-Pseudomonas Gram-negative peritonitis. Kidney Int. 2010;78(4):408–14.