Phân tích sống còn nguyên nhân dưới ảnh hưởng của rủi ro cạnh tranh sử dụng chính sách điều trị điều chỉnh theo chiều dọc

Springer Science and Business Media LLC - Tập 30 - Trang 213-236 - 2023
Iván Díaz1, Katherine L. Hoffman2, Nima S. Hejazi3
1Division of Biostatistics, Department of Population Health, New York University Grossman School of Medicine, New York, USA
2Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, USA
3Department of Biostatistics, T.H. Chan School of Public Health, Harvard University, Boston, USA

Tóm tắt

Các chính sách điều trị điều chỉnh theo chiều dọc (LMTP) đã được phát triển gần đây như một phương pháp mới để xác định và ước lượng các thông số nguyên nhân phụ thuộc vào giá trị tự nhiên của điều trị. LMTP đại diện cho một tiến bộ quan trọng trong suy diễn nguyên nhân cho các nghiên cứu theo chiều dọc, vì chúng cho phép định nghĩa và ước lượng không tham số về tác động chung của nhiều điều trị phân loại, thứ bậc hoặc liên tục được đo lường tại nhiều thời điểm khác nhau. Chúng tôi mở rộng phương pháp LMTP cho các vấn đề trong đó kết quả là một biến thời gian đến sự kiện phải chịu sự kiện cạnh tranh làm cản trở việc quan sát sự kiện quan tâm. Chúng tôi trình bày các kết quả nhận diện và các ước lượng hiệu quả địa phương không tham số sử dụng các kỹ thuật hồi quy thích ứng dữ liệu linh hoạt để giảm thiểu thiên lệch do sai sót mô hình, đồng thời giữ lại các thuộc tính bất biến quan trọng như tính nhất quán $$\sqrt{n}$$. Chúng tôi trình bày một ứng dụng để ước lượng tác động của thời gian đến đặt nội khí quản đối với tổn thương thận cấp tính ở bệnh nhân COVID-19 nhập viện, trong đó cái chết do nguyên nhân khác được coi là sự kiện cạnh tranh.

Từ khóa

#chính sách điều trị điều chỉnh theo chiều dọc #phân tích nguyên nhân #sự kiện cạnh tranh #thời gian đến sự kiện #tổn thương thận cấp tính #COVID-19

Tài liệu tham khảo

Andersen P, Gill RD (1982) Cox’s regression model for counting processes: a large sample study. Ann Stat 10:1100–1120 Bang H, Robins JM (2005) Doubly robust estimation in missing data and causal inference models. Biometrics 61:962–973 Bavishi AA, Mylvaganam RJ, Agarwal R, Avery RJ, Cuttica MJ (2021) Timing of intubation in coronavirus disease 2019: A study of ventilator mechanics, imaging, findings, and outcomes. Crit Care Explor 3:e0415 Benkeser D, Carone M, Gilbert PB (2018) Improved estimation of the cumulative incidence of rare outcomes. Stat Med 37:280–293 Bickel PJ (1982) On adaptive estimation. Ann Stat 10:647–671 Bickel PJ, Klaassen CA, Ritov Y, Wellner JA (1997) Efficient and Adaptive Estimation for Semiparametric Models. Springer-Verlag, Berlin Breiman L (1996) Stacked regressions. Mach Learn 24:49–64 Breiman L (2001) Random forests. Mach Learn 45:5–32 Buckley J, James I (1979) Linear regression with censored data. Biometrika 66:429–436 Cain LE, Robins JM, Lanoy E, Logan R, Costagliola D, Hernán MA (2010) When to start treatment? a systematic approach to the comparison of dynamic regimes using observational data. Int J Biostat. https://doi.org/10.2202/1557-4679.1212 Chen T, Guestrin C (2016) Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM Chernozhukov V, Chetverikov D, Demirer M, Duflo E, Hansen C, Newey W (2017) Double/debiased/neyman machine learning of treatment effects. Am Econ Rev 107:261–65 Chernozhukov V, Chetverikov D, Demirer M, Duflo E, Hansen C, Newey W, Robins J (2018) Double/debiased machine learning for treatment and structural parameters. Economet J 21:C1–C68 Cox DR (1972) Regression models and life-tables. J R Stat Soc: Ser B (Stat Methodol) 34:187–202 Coyle JR, Hejazi NS, Malenica I, Phillips RV, Sofrygin O (2022) sl3: Modern pipelines for machine learning and Super Learning. R package version 1(4):4 Díaz I, Hejazi NS (2020) Causal mediation analysis for stochastic interventions. J R Stat Soc: Ser B (Stat Methodol) 82:661–683 Díaz I, Hejazi NS, Rudolph KE, van der Laan MJ (2020) Non-parametric efficient causal mediation with intermediate confounders. Biometrika 108:627–641 Díaz I, van der Laan MJ (2011) Super learner based conditional density estimation with application to marginal structural models. Int J Biostat 7:1–20 Díaz I, van der Laan MJ (2012) Population intervention causal effects based on stochastic interventions. Biometrics 68:541–549 Díaz I, van der Laan M J (2018) Stochastic treatment regimes. In: Targeted Learning in Data Science: Causal Inference for Complex Longitudinal Studies. Springer, pp. 219–232 Díaz I, Williams N, Hoffman KL, Schenck EJ (2021) Nonparametric causal effects based on longitudinal modified treatment policies. J Am Stat Assoc, 1–16 Durdevic M, Durdevic D, Riera MB, Nimkar A, Stan AC, Hasan A, Naaraayan A, Jesmajian S (2020) Progressive renal failure in patients with covid-19 after initiating mechanical ventilation: A case series. Chest 158:A2629 Enea M (2009) Fitting linear models and generalized linear models with large data sets in R. In: Statistical Methods for the Analysis of Large Datasets. pp. 411–414 Fine JP, Gray RJ (1999) A proportional hazards model for the subdistribution of a competing risk. J Am Stat Assoc 94:496–509 Friedman J, Hastie T, Tibshirani R., Narasimhan B, Tay K, Simon N, Yang J (2022) glmnet: Lasso and elastic-net regularized generalized linear models. R package version 4.1-3 Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Ann Stat 29:1189–1232 Friedman JH et al (1991) Multivariate adaptive regression splines. Ann Stat 19:1–67 Gelman A, Hill J (2006) Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge University Press, Cambridge Gibson EA, Nunez Y, Abuawad A, Zota AR, Renzetti S, Devick KL, Gennings C, Goldsmith J, Coull BA, Kioumourtzoglou M-A (2019) An overview of methods to address distinct research questions on environmental mixtures: an application to persistent organic pollutants and leukocyte telomere length. Environ Health 18:1–16 Goyal P, Choi JJ, Pinheiro LC, Schenck EJ, Chen R, Jabri A, Satlin MJ, Campion TR Jr, Nahid M, Ringel JB et al (2020) Clinical characteristics of covid-19 in new york city. N Engl J Med 382:2372–2374 Haneuse S, Rotnitzky A (2013) Estimation of the effect of interventions that modify the received treatment. Stat Med 32:5260–5277 Hasan SS, Capstick T, Ahmed R, Kow CS, Mazhar F, Merchant HA, Zaidi STR (2020) Mortality in COVID-19 patients with acute respiratory distress syndrome and corticosteroids use: a systematic review and meta-analysis. Expert Rev Respir Med 14:1149–1163 Hejazi NS, Benkeser D, Díaz I, van der Laan MJ (2022a) Efficient estimation of modified treatment policy effects based on the generalized propensity score Hejazi NS, Benkeser DC, van der Laan MJ (2022b) haldensify: Highly adaptive lasso conditional density estimation. R package version 0.2.3 Hejazi NS, Rudolph KE, van der Laan MJ, Díaz I (2022c) Nonparametric causal mediation analysis for stochastic interventional (in) direct effects. Biostatistics in press Hejazi NS, van der Laan MJ, Janes HE, Gilbert PB, Benkeser DC (2020) Efficient nonparametric inference on the effects of stochastic interventions under two-phase sampling, with applications to vaccine efficacy trials. Biometrics 77:1241–1253 Henderson R, Diggle P, Dobson A (2000) Joint modelling of longitudinal measurements and event time data. Biostatistics 1:465–480 Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J: J Math Methods Biosci 50:346–363 Husain-Syed F, Slutsky AS, Ronco C (2016) Lung-kidney cross-talk in the critically ill patient. Am J Respir Crit Care Med 194:402–414 Joannidis M, Forni LG, Klein SJ, Honore PM, Kashani K, Ostermann M, Prowle J, Bagshaw SM, Cantaluppi V, Darmon M et al (2020) Lung-kidney interactions in critically ill patients: consensus report of the acute disease quality initiative (ADQI) 21 Workgroup. Intensive Care Med 46:654–672 Kennedy EH (2019) Nonparametric causal effects based on incremental propensity score interventions. J Am Stat Assoc 114:645–656 Kes P, Jukić NB (2010) Acute kidney injury in the intensive care unit. Bosn J Basic Med Sci 10:S8 Klaassen CA (1987) Consistent estimation of the influence function of locally asymptotically linear estimators. Ann Stat 15:1548–1562 Luedtke AR, Sofrygin O, van der Laan MJ, Carone M (2017) Sequential double robustness in right-censored longitudinal models. arXiv preprint arXiv:1705.02459 McCullagh P, Nelder JA (1989) Generalized Linear Models. CRC Press, Boco Raton Papoutsi E, Giannakoulis VG, Xourgia E, Routsi C, Kotanidou A, Siempos II (2021) Effect of timing of intubation on clinical outcomes of critically ill patients with COVID-19: A systematic review and meta-analysis of non-randomized cohort studies. Crit Care 25:1–9 Pearl J (2000) Causality: Models, Reasoning, and Inference. Cambridge University Press, Cambridge Perkins GD, Couper K, Connolly B, Baillie JK, Bradley JM, Dark P, De Soyza A, Gorman E, Gray A, Hamilton L et al (2020) Recovery-respiratory support: Respiratory strategies for patients with suspected or proven COVID-19 respiratory failure; continuous positive airway pressure, high-flow nasal oxygen, and standard care: A structured summary of a study protocol for a randomised controlled trial. Trials 21:1–3 Prentice RL, Kalbfleisch JD, Peterson AV Jr, Flournoy N, Farewell VT, Breslow NE (1978) The analysis of failure times in the presence of competing risks. Biometrics 34:541–554 Richardson TS, Robins JM (2013) Single world intervention graphs (SWIGs): A unification of the counterfactual and graphical approaches to causality. Center for the Statistics and the Social Sciences, University of Washington Series. Working Paper 128: 2013 Robins J, Li L, Tchetgen Tchetgen E, van der Vaart AW (2009) Quadratic semiparametric von Mises calculus. Metrika 69:227–247 Robins, JM (2000) Robust estimation in sequentially ignorable missing data and causal inference models. In Proceedings of the American Statistical Association Robins JM, Hernán MA, Siebert U (2004) Effects of multiple interventions. Comparative quantification of health risks: global and regional burden of disease attributable to selected major risk factors 1:2191–2230 Robins JM, Rotnitzky A, Zhao L (1994) Estimation of regression coefficients when some regressors are not always observed. J Am Stat Assoc 89:846–866 Rotnitzky A, Robins J, Babino L (2017) On the multiply robust estimation of the mean of the g-functional. arXiv preprint arXiv:1705.08582 Rubin D, van der Laan MJ (2007) A doubly robust censoring unbiased transformation. Int J Biostat 3:1–21 Rudolph KE, Gimbrone C, Matthay EC, Diaz I, Davis CS, Pamplin II JR, Keyes K, Cerda M (2021) When effects cannot be estimated: redefining estimands to understand the effects of naloxone access laws. arXiv preprint arXiv:2105.02757 Rytgaard HC, van der Laan MJ (2021) One-step TMLE for targeting cause-specific absolute risks and survival curves. arXiv preprint arXiv:2107.01537 Schenck EJ, Hoffman KL, Cusick M, Kabariti J, Sholle ET, Campion TR Jr (2021) Critical care database for advanced research (cedar): An automated method to support intensive care units with electronic health record data. J Biomed Inform 118:103789 Stock JH (1989) Nonparametric policy analysis. J Am Stat Assoc 84:567–575 Thomson DA, Calligaro GL (2021) Timing of intubation in COVID-19: Not just location, location, location? Crit Care 25:1–2 Tobin MJ (2006) Principles and practice of mechanical ventilation Tobin MJ (2020) Basing respiratory management of COVID-19 on physiological principles. Am J Respir Crit Care Med 201:1319–1320 Tobin MJ, Laghi F, Jubran A (2020) Caution about early intubation and mechanical ventilation in COVID-19. Ann Intensive Care 10:1–3 van Buuren S, Groothuis-Oudshoorn K (2011) mice: Multivariate imputation by chained equations in R. J Stat Softw 45:1–67 van der Laan MJ, Dudoit S, van der Vaart AW (2006) The cross-validated adaptive epsilon-net estimator. Stat Decis 24:373–395 van der Laan MJ, Petersen ML, Joffe MM (2005) History-adjusted marginal structural models and statically-optimal dynamic treatment regimens. Int J Biostat. https://doi.org/10.2202/1557-4679.1003 van der Laan MJ, Polley EC, Hubbard AE (2007) Super learner. Stat Appl Genet Mol Biol. https://doi.org/10.2202/1544-6115.1309 van der Laan MJ, Robins JM (2003) Unified Methods for Censored Longitudinal Data and Causality. Springer, New York van der Laan MJ, Rose S (2011) Targeted Learning: Causal Inference for Observational and Experimental Data. Springer, New York van der Laan MJ, Rose S (2018) Targeted Learning in Data Science: Causal Inference for Complex longitudinal Studies. Springer, New York van der Laan MJ, Rubin D (2006) Targeted maximum likelihood learning. Int J Biost. https://doi.org/10.2202/1557-4679.1043 van der Vaart AW (1998) Asymptotic Statistics. Cambridge University Press, Cambridge VanderWeele TJ, Vansteelandt S, Robins JM (2014) Effect decomposition in the presence of an exposure-induced mediator-outcome confounder. Epidemiology 25:300 von Mises R (1947) On the asymptotic distribution of differentiable statistical functions. Ann Math Stat 18:309–348 Wen L, Marcus J, Young J (2021) Intervention treatment distributions that depend on the observed treatment process and model double robustness in causal survival analysis. arXiv preprint arXiv:2112.00807 Westling T, Carone M (2020) A unified study of nonparametric inference for monotone functions. Ann Stat 48:1001 Westling T, van der Laan MJ, Carone M (2020) Correcting an estimator of a multivariate monotone function with isotonic regression. Electron J Stat 14:3032–3069 Williams NT, Hoffman KL, Díaz I (2022) lmtp: Non-parametric causal effects of feasible interventions based on modified treatment policies. R package version 1:1 Wolpert DH (1992) Stacked generalization. Neural Netw 5:241–259 Wright MN, Ziegler A (2017) ranger: A fast implementation of random forests for high dimensional data in C++ and R. Journal of Statistical Software 77 Young JG, Hernán MA, Robins JM (2014) Identification, estimation and approximation of risk under interventions that depend on the natural value of treatment using observational data. Epidemiol Method 3:1–19 Young JG, Stensrud MJ, Tchetgen Tchetgen EJ, Hernán MA (2020) A causal framework for classical statistical estimands in failure-time settings with competing events. Stat Med 39:1199–1236 Zeger SL, Liang K-Y (1992) An overview of methods for the analysis of longitudinal data. Stat Med 11:1825–1839 Zheng W, van der Laan MJ (2011) Cross-validated targeted minimum-loss-based estimation. Causal Inference for Observational and Experimental Data. Springer, In Targeted Learning, pp 459–474