Causal Inference by Independent Component Analysis: Theory and Applications*

Oxford Bulletin of Economics and Statistics - Tập 75 Số 5 - Trang 705-730 - 2013
Alessio Moneta1,2,3,4,5, Doris Entner1,2,3,4,5, Patrik O. Hoyer1,2,3,4,5, Alex Coad1,2,3,4,5
19600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden, MA 02148, USA.
2Department of Business and Management, Aalborg University, Aalborg, Denmark
3SPRU, University of Sussex, Brighton, UK
4Institute of Economics, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
5Helsinki Institute for Information Technology, Department of Computer Science, University of Helsinki, Helsinki, Finland

Tóm tắt

AbstractStructural vector‐autoregressive models are potentially very useful tools for guiding both macro‐ and microeconomic policy. In this study, we present a recently developed method for estimating such models, which uses non‐normality to recover the causal structure underlying the observations. We show how the method can be applied to both microeconomic data (to study the processes of firm growth and firm performance) and macroeconomic data (to analyse the effects of monetary policy).

Từ khóa


Tài liệu tham khảo

10.1111/j.1751-5823.2011.00131.x

10.2307/2297968

10.1162/neco.1995.7.6.1129

Bernanke B., 1992, ‘The federal funds rate and the channels of monetary transmission’, The American Economic Review, 82, 901

10.1162/0033553053327452

10.1162/003355398555775

10.1007/s001810100089

10.1016/S0261-5606(02)00076-1

10.1016/S0304-4076(98)00009-8

10.1016/j.jeconom.2008.12.019

10.1111/j.1468-0084.2008.00539.x

Canova F., 1995, Handbook of Applied Econometrics. Macroeconomics, 73

10.1109/5.720250

10.1016/S1574-0048(99)01005-8

10.1080/10438590802472531

10.1016/0165-1684(94)90029-9

Dasgupta M.andMishra S. K.(2004).Least Absolute Deviation Estimation of Linear Econometric Models: A Literature Review MPRA Paper No. 1781.

10.1046/j.0305-9049.2003.00087.x

10.1111/j.1468-0084.2007.00496.x

10.1093/oep/gpf055

10.1016/S0167-7187(00)00085-0

10.1002/0471221317

10.1016/S0893-6080(00)00026-5

10.1145/1390156.1390210

10.1111/j.1468-0084.1990.mp52002003.x

Lacerda G., 2008, Proceedings of the 24th Conference on Uncertainty in Artificial Intelligence

10.1198/jbes.2009.06003

Lanne M.andSaikkonen P.(2009).‘Noncausal Vector Autoregression’ Bank of Finland Research Discussion Papers no. 18.

10.1111/1467-6419.00066

Lütkepohl H., 2006, Palgrave Handbook of Econometrics, 477

Moneta A., 2004, ‘Identification of monetary policy shocks: a graphical causal approach’, Notas Económicas, 20, 39

10.1007/s00181-007-0159-9

Pharl J., 2000, Causality: Models Reasoning and Inference

10.1017/S0266466600009920

Shimizu S., 2006, ‘A linear non‐Gaussian acyclic model for causal discovery’, Journal of Machine Learning Research, 7, 2003

10.1080/00949650008811997

10.2307/1912017

Sprites P., 2000, Causation Prediction, and Search, 2nd edn

10.1257/jep.15.4.101

10.1080/01621459.1997.10473634