Causal Inference: A Missing Data Perspective
Tóm tắt
Từ khóa
Tài liệu tham khảo
Rubin, D. B. (1978). Bayesian inference for causal effects: The role of randomization. <i>Ann. Statist.</i> <b>6</b> 34–58.
Angrist, J. D., Imbens, G. W. and Rubin, D. B. (1996). Identification of causal effects using instrumental variables. <i>J. Amer. Statist. Assoc.</i> <b>91</b> 444–455.
Imbens, G. W. and Rubin, D. B. (1997). Bayesian inference for causal effects in randomized experiments with noncompliance. <i>Ann. Statist.</i> <b>25</b> 305–327.
Rubin, D. B. (2007). The design versus the analysis of observational studies for causal effects: Parallels with the design of randomized trials. <i>Stat. Med.</i> <b>26</b> 20–36.
Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. <i>J. R. Stat. Soc. Ser. B. Stat. Methodol.</i> <b>58</b> 267–288.
Imbens, G. W. (2000). The role of the propensity score in estimating dose-response functions. <i>Biometrika</i> <b>87</b> 706–710.
Mealli, F. and Rubin, D. B. (2015). Clarifying missing at random and related definitions, and implications when coupled with exchangeability. <i>Biometrika</i> <b>102</b> 995–1000.
Ding, P., Geng, Z., Yan, W. and Zhou, X.-H. (2011). Identifiability and estimation of causal effects by principal stratification with outcomes truncated by death. <i>J. Amer. Statist. Assoc.</i> <b>106</b> 1578–1591.
Frumento, P., Mealli, F., Pacini, B. and Rubin, D. B. (2012). Evaluating the effect of training on wages in the presence of noncompliance, nonemployment, and missing outcome data. <i>J. Amer. Statist. Assoc.</i> <b>107</b> 450–466.
Frumento, P., Mealli, F., Pacini, B. and Rubin, D. B. (2016). The fragility of standard inferential approaches in principal stratification models relative to direct likelihood approaches. <i>Stat. Anal. Data Min.</i> <b>9</b> 58–70.
Manski, C. F. (1990). Nonparametric bounds on treatment effects. <i>Am. Econ. Rev.</i> <b>80</b> 319–323.
Rubin, D. B. (1986). Statistical matching using file concatenation with adjusted weights and multiple imputations. <i>J. Bus. Econom. Statist.</i> <b>4</b> 87–94.
Crump, R. K., Hotz, V. J., Imbens, G. W. and Mitnik, O. A. (2009). Dealing with limited overlap in estimation of average treatment effects. <i>Biometrika</i> <b>96</b> 187–199.
Hainmueller, J. (2012). Entropy balancing for causal effects: A multivariate reweighting method to produce balanced samples in observational studies. <i>Polit. Anal.</i> <b>20</b> 25–46.
Rubin, D. B. (2008). For objective causal inference, design trumps analysis. <i>Ann. Appl. Stat.</i> <b>2</b> 808–840.
Zubizarreta, J. R. (2015). Stable weights that balance covariates for estimation with incomplete outcome data. <i>J. Amer. Statist. Assoc.</i> <b>110</b> 910–922.
Ding, P. and VanderWeele, T. J. (2016). Sensitivity analysis without assumptions. <i>Epidemiology</i> <b>27</b> 368–377.
Rosenbaum, P. R. (1987). Sensitivity analysis for certain permutation inferences in matched observational studies. <i>Biometrika</i> <b>74</b> 13–26.
Rosenbaum, P. R. and Rubin, D. B. (1983a). Assessing sensitivity to an unobserved binary covariate in an observational study with binary outcome. <i>J. R. Stat. Soc. Ser. B. Stat. Methodol.</i> <b>45</b> 212–218.
Rosenbaum, P. R. and Rubin, D. B. (1983b). The central role of the propensity score in observational studies for causal effects. <i>Biometrika</i> <b>70</b> 41–55.
Rosenbaum, P. R. (2002a). Covariance adjustment in randomized experiments and observational studies. <i>Statist. Sci.</i> <b>17</b> 286–327.
Lin, W. (2013). Agnostic notes on regression adjustments to experimental data: Reexamining Freedman’s critique. <i>Ann. Appl. Stat.</i> <b>7</b> 295–318.
Ding, P. and Dasgupta, T. (2016). A potential tale of two-by-two tables from completely randomized experiments. <i>J. Amer. Statist. Assoc.</i> <b>111</b> 157–168.
Grilli, L. and Mealli, F. (2008). Nonparametric bounds on the causal effect of university studies on job opportunities using principal stratification. <i>J. Educ. Behav. Stat.</i> <b>33</b> 111–130.
Ichino, A., Mealli, F. and Nannicini, T. (2008). From temporary help jobs to permanent employment: What can we learn from matching estimators and their sensitivity? <i>J. Appl. Econometrics</i> <b>23</b> 305–327.
Abadie, A. and Imbens, G. W. (2006). Large sample properties of matching estimators for average treatment effects. <i>Econometrica</i> <b>74</b> 235–267.
Hirano, K., Imbens, G. W. and Ridder, G. (2003). Efficient estimation of average treatment effects using the estimated propensity score. <i>Econometrica</i> <b>71</b> 1161–1189.
Imai, K. and Ratkovic, M. (2014). Covariate balancing propensity score. <i>J. R. Stat. Soc. Ser. B. Stat. Methodol.</i> <b>76</b> 243–263.
Imbens, G. W. (2004). Nonparametric estimation of average treatment effects under exogeneity: A review. <i>Rev. Econ. Stat.</i> <b>86</b> 4–29.
Rosenbaum, P. R. and Rubin, D. B. (1984). Reducing bias in observational studies using subclassification on the propensity score. <i>J. Amer. Statist. Assoc.</i> <b>79</b> 516–524.
Bang, H. and Robins, J. M. (2005). Doubly robust estimation in missing data and causal inference models. <i>Biometrics</i> <b>61</b> 962–972.
Cheng, J. and Small, D. S. (2006). Bounds on causal effects in three-arm trials with non-compliance. <i>J. R. Stat. Soc. Ser. B. Stat. Methodol.</i> <b>68</b> 815–836.
Ding, P. and Geng, Z. (2014). Identifiability of subgroup causal effects in randomized experiments with nonignorable missing covariates. <i>Stat. Med.</i> <b>33</b> 1121–1133.
Mattei, A., Mealli, F. and Pacini, B. (2014). Identification of causal effects in the presence of nonignorable missing outcome values. <i>Biometrics</i> <b>70</b> 278–288.
Seaman, S., Galati, J., Jackson, D. and Carlin, J. (2013). What is meant by “missing at random”? <i>Statist. Sci.</i> <b>28</b> 257–268.
Yang, F. and Small, D. S. (2016). Using post-outcome measurement information in censoring-by-death problems. <i>J. R. Stat. Soc. Ser. B. Stat. Methodol.</i> <b>78</b> 299–318.
Ding, P., Feller, A. and Miratrix, L. (2016). Randomization inference for treatment effect variation. <i>J. R. Stat. Soc. Ser. B. Stat. Methodol.</i> <b>78</b> 655–671.
Li, X. and Ding, P. (2017). General forms of finite population central limit theorems with applications to causal inference. <i>J. Amer. Statist. Assoc.</i> <b>112</b> 1759–1769.
Neyman, J. (1935). Statistical problems in agricultural experimentation. <i>Suppl. J. R. Stat. Soc.</i> <b>2</b> 107–180.
Nolen, T. L. and Hudgens, M. G. (2011). Randomization-based inference within principal strata. <i>J. Amer. Statist. Assoc.</i> <b>106</b> 581–593.
Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and nonrandomized studies. <i>J. Educ. Psychol.</i> <b>66</b> 688–701.
Robins, J. M., Rotnitzky, A. and Zhao, L. P. (1995). Analysis of semiparametric regression models for repeated outcomes in the presence of missing data. <i>J. Amer. Statist. Assoc.</i> <b>90</b> 106–121.
Li, F., Mattei, A. and Mealli, F. (2015). Evaluating the causal effect of university grants on student dropout: Evidence from a regression discontinuity design using principal stratification. <i>Ann. Appl. Stat.</i> <b>9</b> 1906–1931.
Lunceford, J. K. and Davidian, M. (2004). Stratification and weighting via the propensity score in estimation of causal treatment effects: A comparative study. <i>Stat. Med.</i> <b>23</b> 2937–2960.
Rubin, D. B. (2005). Causal inference using potential outcomes: Design, modeling, decisions. <i>J. Amer. Statist. Assoc.</i> <b>100</b> 322–331.
Imbens, G. W. (2003). Sensitivity to exogeneity assumptions in program evaluation. <i>Am. Econ. Rev.</i> <b>93</b> 126–132.
Mattei, A. and Mealli, F. (2011). Augmented designs to assess principal strata direct effects. <i>J. R. Stat. Soc. Ser. B. Stat. Methodol.</i> <b>73</b> 729–752.
Hahn, J. (1998). On the role of the propensity score in efficient semiparametric estimation of average treatment effects. <i>Econometrica</i> <b>66</b> 315–331.
Belloni, A., Chernozhukov, V. and Hansen, C. (2014). Inference on treatment effects after selection among high-dimensional controls. <i>Rev. Econ. Stud.</i> <b>81</b> 608–650.
White, H. (1980). A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. <i>Econometrica</i> <b>48</b> 817–838.
Heckman, J. J. (1979). Sample selection bias as a specification error. <i>Econometrica</i> <b>47</b> 153–161.
Gelman, A., Meng, X.-L. and Stern, H. (1996). Posterior predictive assessment of model fitness via realized discrepancies (with discussion). <i>Statist. Sinica</i> <b>6</b> 733–807.
Cochran, W. G. (1957). Analysis of covariance: Its nature and uses. <i>Biometrics</i> <b>13</b> 261–281.
Tsiatis, A. A., Davidian, M., Zhang, M. and Lu, X. (2008). Covariate adjustment for two-sample treatment comparisons in randomized clinical trials: A principled yet flexible approach. <i>Stat. Med.</i> <b>27</b> 4658–4677.
Rubin, D. B. (1980). Comment on “Randomization analysis of experimental data: The Fisher randomization test” by D. Basu. <i>J. Amer. Statist. Assoc.</i> <b>75</b> 591–593.
Schwartz, S., Li, F. and Reiter, J. P. (2012). Sensitivity analysis for unmeasured confounding in principal stratification settings with binary variables. <i>Stat. Med.</i> <b>31</b> 949–962.
Chen, H., Geng, Z. and Zhou, X.-H. (2009). Identifiability and estimation of causal effects in randomized trials with noncompliance and completely nonignorable missing data. <i>Biometrics</i> <b>65</b> 675–682.
Newey, W. K. (1997). Convergence rates and asymptotic normality for series estimators. <i>J. Econometrics</i> <b>79</b> 147–168.
Robins, J. M. and Ritov, Y. (1997). Toward a curse of dimensionality appropriate (CODA) asymptotic theory for semi-parametric models. <i>Stat. Med.</i> <b>16</b> 285–319.
Chung, E. and Romano, J. P. (2013). Exact and asymptotically robust permutation tests. <i>Ann. Statist.</i> <b>41</b> 484–507.
Hoeffding, W. (1952). The large-sample power of tests based on permutations of observations. <i>Ann. Math. Stat.</i> <b>23</b> 169–192.
Imbens, G. W. and Rubin, D. B. (2015). <i>Causal Inference for Statistics</i>, <i>Social</i>, <i>and Biomedical Sciences</i>: <i>An Introduction</i>. Cambridge Univ. Press, New York.
Angrist, J. D. and Pischke, J.-S. (2008). <i>Mostly Harmless Econometrics</i>: <i>An Empiricist’s Companion</i>. Princeton Univ. Press, Princeton, NJ.
Fisher, R. A. (1935). <i>The Design of Experiments</i>, 1st ed. Oliver and Boyd, Edinburgh.
Bickel, P. J. and Doksum, K. A. (2015). <i>Mathematical Statistics</i>: <i>Basic Ideas and Selected Topics</i>, <i>Volume I</i>, 2nd ed. CRC Press, Boca Raton, FL.
Chapin, F. S. (1947). <i>Experimental Designs in Sociological Research</i>. Harper, New York.
Cochran, W. G. (1953). <i>Sampling Techniques</i>, 1st ed. Wiley, New York.
Cochran, W. G. (2007). <i>Sampling Techniques</i>, 3rd ed. Wiley, New York.
Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A. and Rubin, D. B. (2014). <i>Bayesian Data Analysis</i>, 3nd ed. Chapman & Hall/CRC, Boca Raton, FL.
Gustafson, P. (2015). <i>Bayesian Inference for Partially Identified Models</i>: <i>Exploring the Limits of Limited Data</i>. CRC Press, Boca Raton, FL.
Hájek, J. (1971). Comment on a paper by D. Basu. In <i>Foundations of Statistical Inference</i> (V. P. Godambe and D. A. Sprott, eds.) 236. Holt, Rinehart and Winston, Toronto.
Hirano, K. and Imbens, G. W. (2004). The propensity score with continuous treatments. In <i>Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives</i>. 73–84. Wiley, Chichester.
Little, R. J. and Rubin, D. B. (2002). <i>Statistical Analysis with Missing Data</i>, 2nd ed. Wiley-Interscience, Hoboken, NJ.
Qin, J. (2017). <i>Biased Sampling</i>, <i>Over-Identified Parameter Problems and Beyond</i>. Springer, Singapore.
Ridgeway, G., McCaffrey, D., Morral, A., Griffin, B. A. and Burgette, L. (2017). twang: Toolkit for Weighting and Analysis of Nonequivalent Groups. R package version 1.5.
Robins, J. M., Rotnitzky, A. and Scharfstein, D. O. (2000). Sensitivity analysis for selection bias and unmeasured confounding in missing data and causal inference models. In <i>Statistical Models in Epidemiology</i>, <i>the Environment</i>, <i>and Clinical Trials</i> 1–94. Springer, New York.
Rubin, D. B. (1975). Bayesian inference for causality: The role of randomization. In <i>Proceedings of the Social Statistics Section of the American Statistical Association</i> 233–239.
van der Laan, M. J. and Rose, S. (2011). <i>Targeted Learning</i>: <i>Causal Inference for Observational and Experimental Data</i>. Springer, New York.
Horvitz, D. and Thompson, D. (1952). A generalization of sampling without replacement from a finite universe. <i>J. Amer. Statist. Assoc.</i> <b>47</b> 663–685.
Kang, J. D. and Schafer, J. L. (2007). Demystifying double robustness: A comparison of alternative strategies for estimating a population mean from incomplete data. <i>Statist. Sci.</i> <b>22</b> 523–539.
Li, F., Baccini, M., Mealli, F., Zell, E. R., Frangakis, C. E. and Rubin, D. B. (2014). Multiple imputation by ordered monotone blocks with application to the anthrax vaccine research program. <i>J. Comput. Graph. Statist.</i> <b>23</b> 877–892.
Imbens, G. W. and Angrist, J. (1994). Identification and estimation of local average treatment effects. <i>Econometrica</i> <b>62</b> 467–476.
Fan, Y. and Park, S. S. (2010). Sharp bounds on the distribution of treatment effects and their statistical inference. <i>Econometric Theory</i> <b>26</b> 931–951.
Liublinska, V. and Rubin, D. B. (2014). Sensitivity analysis for a partially missing binary outcome in a two-arm randomized clinical trial. <i>Stat. Med.</i> <b>33</b> 4170–4185.
Murray, J. S. and Reiter, J. P. (2016). Multiple imputation of missing categorical and continuous values via Bayesian mixture models with local dependence. <i>J. Amer. Statist. Assoc.</i> <b>111</b> 1466–1479.
Abadie, A. and Imbens, G. (2011). Bias corrected matching estimators for average treatment effects. <i>J. Bus. Econom. Statist.</i> <b>29</b> 1–11.
Andrews, D. W. (2000). Inconsistency of the bootstrap when a parameter is on the boundary of the parameter space. <i>Econometrica</i> <b>68</b> 399–405.
Athey, S. and Imbens, G. W. (2015). Machine learning methods for estimating heterogeneous causal effects. Available at <a href="arXiv:1504.01132">arXiv:1504.01132</a>.
Athey, S., Imbens, G. W. and Wager, S. (2018). Approximate residual balancing: De-biased inference of average treatment effects in high dimensions. <i>J. R. Stat. Soc. Ser. B. Stat. Methodol.</i> To appear. Available at <a href="https://arxiv.org/abs/1604.07125">https://arxiv.org/abs/1604.07125</a>.
Athey, S., Imbens, G., Pham, T. and Wager, S. (2017). Estimating average treatment effects: Supplementary analyses and remaining challenges. <i>Am. Econ. Rev.</i> <b>107</b> 278–281.
Belloni, A., Chernozhukov, V., Fernández-Val, I. and Hansen, C. (2017). Program evaluation and causal inference with high-dimensional data. <i>Econometrica</i> <b>85</b> 233–298.
Bloniarz, A., Liu, H., Zhang, C.-H., Sekhon, J. S. and Yu, B. (2016). Lasso adjustments of treatment effect estimates in randomized experiments. <i>Proc. Natl. Acad. Sci. USA</i> <b>113</b> 7383–7390.
Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., Brubaker, M., Guo, J., Li, P. and Riddell, A. (2017). Stan: A probabilistic programming language. <i>J. Stat. Softw.</i> <b>76</b> 1–32.
Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C., Newey, W. and Robins, J. (2016). Double/debiased machine learning for treatment and causal parameters. Preprint. Available at <a href="arXiv:1608.00060">arXiv:1608.00060</a>.
Chib, S. and Jacobi, L. (2016). Bayesian fuzzy regression discontinuity analysis and returns to compulsory schooling. <i>J. Appl. Econometrics</i> <b>31</b> 1026–1047.
Cornfield, J., Haenszel, W., Hammond, E. et al. (1959). Smoking and lung cancer: Recent evidence and a discussion of some questions. <i>J. Natl. Cancer Inst.</i> <b>22</b> 173–203.
Dawid, A. P. (2000). Causal inference without counterfactuals. <i>J. Amer. Statist. Assoc.</i> <b>95</b> 407–424.
Dawid, A. P. Musio, M. and Murtas, R. (2017). The probability of causation. <i>Law</i>, <i>Probability and Risk</i> <b>16</b> 163–179.
Dempster, A., Laird, N. and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. <i>J. R. Stat. Soc. Ser. B. Stat. Methodol.</i> <b>39</b> 1–38.
Ding, P. (2014). Three occurrences of the hyperbolic-secant distribution. <i>Amer. Statist.</i> <b>68</b> 32–35.
Ding, P. and Lu, J. (2017). Principal stratification analysis using principal scores. <i>J. R. Stat. Soc. Ser. B. Stat. Methodol.</i> <b>79</b> 757–777.
Ding, W. and Song, P. X.-K. (2016). EM algorithm in Gaussian copula with missing data. <i>Comput. Statist. Data Anal.</i> <b>101</b> 1–11.
Elliott, M., Raghunathan, T. and Li, Y. (2010). Bayesian inference for causal mediation effects using principal stratification with dichotomous mediators and outcomes. <i>Biostatistics</i> <b>11</b> 353–372.
Fan, Y., Guerre, E. and Zhu, D. (2017). Partial identification of functionals of the joint distribution of “potential outcomes”. <i>J. Econometrics</i> <b>197</b> 42–59.
Feller, A., Greif, E., Miratrix, L. and Pillai, N. (2016). Principal stratification in the twilight zone: Weakly separated components in finite mixture models. Preprint. Available at <a href="arXiv:1602.06595">arXiv:1602.06595</a>.
Firth, D. and Bennett, K. E. (1998). Robust models in probability sampling. <i>J. R. Stat. Soc. Ser. B. Stat. Methodol.</i> <b>60</b> 3–21.
Frangakis, C. and Rubin, D. B. (1999). Addressing complications of intention-to-treat analysis in the combined presence of all-or-none treatment-noncompliance and subsequent missing outcomes. <i>Biometrika</i> <b>86</b> 365–378.
Frangakis, C. and Rubin, D. B. (2002). Principal stratification in causal inference. <i>Biometrics</i> <b>58</b> 21–29.
Gallop, R., Small, D., Lin, J., Elliot, M., Joffe, M. and Have, T. T. (2009). Mediation analysis with principal stratification. <i>Stat. Med.</i> <b>28</b> 1108–1130.
Gelfand, A. and Smith, A. (1990). Sampling-based approaches to calculating marginal densities. <i>J. Amer. Statist. Assoc.</i> <b>85</b> 398–409.
Gilbert, P. and Hudgens, M. (2008). Evaluating candidate principal surrogate endpoints. <i>Biometrics</i> <b>64</b> 1146–1154.
Graham, B. S., de Xavier Pinto, C. C. and Egel, D. (2012). Inverse probability tilting for moment condition models with missing data. <i>Rev. Econ. Stud.</i> <b>79</b> 1053–1079.
Gustafson, P. (2009). What are the limits of posterior distributions arising from nonidentified models, and why should we care? <i>J. Amer. Statist. Assoc.</i> <b>104</b> 1682–1695.
Heckman, J., Lopes, H. and Piatek, R. (2014). Treatment effects: A Bayesian perspective. <i>Econometric Rev.</i> <b>33</b> 36–67.
Ho, D. E., Imai, K., King, G. and Stuart, E. A. (2011). MatchIt: Nonparametric preprocessing for parametric causal inference. <i>J. Stat. Softw.</i> <b>42</b> 1–28.
Holland, P. (1986). Statistics and causal inference (with discussion). <i>J. Amer. Statist. Assoc.</i> <b>81</b> 945–970.
Huber, P. J. (1967). The behavior of maximum likelihood estimates under nonstandard conditions. In <i>Proc. Fifth Berkeley Sympos. Math. Statist. and Probability</i> <b>1</b> 221–233. Univ. California Press, Berkeley, CA.
Imai, K. (2008). Sharp bounds on the causal effects in randomized experiments with “truncation-by-death”. <i>Statist. Probab. Lett.</i> <b>78</b> 144–149.
Imai, K. and van Dyk, D. (2004). Causal treatment with general treatment regimes: Generalizing the propensity score. <i>J. Amer. Statist. Assoc.</i> <b>99</b> 854–866.
Li, F., Morgan, K. and Zaslavsky, A. (2018). Balancing covariates via propensity score weighting. <i>J. Amer. Statist. Assoc.</i> To appear. Available at <a href="https://doi.org/10.1080/01621459.2016.1260466">https://doi.org/10.1080/01621459.2016.1260466</a>.
Little, R. J. (1988). Missing-data adjustments in large surveys. <i>J. Bus. Econom. Statist.</i> <b>6</b> 287–296.
Little, R. and An, H. (2004). Robust likelihood-based analysis of multivariate data with missing values. <i>Statist. Sinica</i> <b>14</b> 949–968.
Lu, J., Ding, P. and Dasgupta, T. (2015). Treatment effects on ordinal outcomes: Causal estimands and sharp bounds. Preprint. Available at <a href="arXiv:1507.01542">arXiv:1507.01542</a>.
Mealli, F., Imbens, G. W., Ferro, S. and Biggeri, A. (2004). Analyzing a randomized trial on breast self-examination with noncompliance and missing outcomes. <i>Biostatistics</i> <b>5</b> 207–222.
Mebane, W. R. Jr and Poast, P. (2013). Causal inference without ignorability: Identification with nonrandom assignment and missing treatment data. <i>Polit. Anal.</i> <b>21</b> 233–251.
Mercatanti, A. (2004). Analyzing a randomized experiment with imperfect compliance and ignorable conditions for missing data: Theoretical and computational issues. <i>Comput. Statist. Data Anal.</i> <b>46</b> 493–509.
Mercatanti, A. and Li, F. (2014). Do debit cards increase household spending? Evidence from a semiparametric causal analysis of a survey. <i>Ann. Appl. Stat.</i> <b>8</b> 2405–2508.
Mercatanti, A. and Li, F. (2017). Do debit cards decrease cash demand? Causal inference and sensitivity analysis using principal stratification. <i>J. R. Stat. Soc. Ser. C. Appl. Stat.</i> <b>66</b> 759–776.
Miratrix, L. W., Sekhon, J. S. and Yu, B. (2013). Adjusting treatment effect estimates by post-stratification in randomized experiments. <i>J. R. Stat. Soc. Ser. B. Stat. Methodol.</i> <b>75</b> 369–396.
Mitra, R. and Reiter, J. P. (2011). Estimating propensity scores with missing covariate data using general location mixture models. <i>Stat. Med.</i> <b>30</b> 627–641.
Mitra, R. and Reiter, J. P. (2016). A comparison of two methods of estimating propensity scores after multiple imputation. <i>Stat. Methods Med. Res.</i> <b>25</b> 188–204.
Neyman, J. (1990). On the application of probability theory to agricultural experiments. Essay on principles. Section 9. <i>Statist. Sci.</i> <b>5</b> 465–472.
Richardson, T. S., Evans, R. J. and Robins, J. M. (2010). Transparent parameterizations of models for potential outcomes. In <i>Bayesian Statistics</i> <b>9</b> 569–610. Oxford Univ. Press, Oxford.
Robins, J. M. (1986). A new approach to causal inference in mortality studies with sustained exposure periods—Application to control of the healthy worker survivor effect. <i>Math. Modelling</i> <b>7</b> 1393–1512.
Robins, J. M., van der Vaart, A. and Ventura, V. (2000). Asymptotic distribution of $p$ values in composite null models. <i>J. Amer. Statist. Assoc.</i> <b>95</b> 1143–1156.
Rosenbaum, P. R. (1984a). Conditional permutation tests and the propensity score in observational studies. <i>J. Amer. Statist. Assoc.</i> <b>79</b> 565–574.
Rosenbaum, P. R. (1984b). The consquences of adjustment for a concomitant variable that has been affected by the treatment. <i>J. R. Stat. Soc. Ser. B. Stat. Methodol.</i> <b>147</b> 656–666.
Rubin, D. B. (1977). Assignment to a treatment group on the basis of a covariate. <i>Journal of Educational Statistics</i> <b>2</b> 1–26.
Rubin, D. B. (1979). Using multivariate matched sampling and regression adjustment to control bias in observational studies. <i>J. Amer. Statist. Assoc.</i> <b>74</b> 318–324.
Rubin, D. B. (1984). Bayesianly justifiable and relevant frequency calculations for the applies statistician. <i>Ann. Statist.</i> <b>12</b> 1151–1172.
Rubin, D. B. (1998). More powerful randomization-based $p$-values in double-blind trials with non-compliance. <i>Stat. Med.</i> <b>17</b> 371–385.
Rubin, D. B. (2006a). Causal inference through potential outcomes and principal stratification: Application to studies with “censoring” due to death. <i>Statist. Sci.</i> <b>91</b> 299–321.
Scharfstein, D., Rotnitzky, A. and Robins, J. M. (1999). Adjusting for nonignorable drop-out using semiparametric nonresponse models (with discussion). <i>J. Amer. Statist. Assoc.</i> <b>94</b> 1096–1146.
Sekhon, J. S. (2011). Multivariate and propensity score matching software with automated balance optimization: The matching package for R. <i>J. Stat. Softw.</i> <b>42</b> 1–52.
Stuart, E. (2010). Matching methods for causal inference: A review and a look forward. <i>Statist. Sci.</i> <b>25</b> 1–21.
Tanner, M. and Wong, W. (1987). The calculation of posterior distributions by data augmentation. <i>J. Amer. Statist. Assoc.</i> <b>82</b> 528–540.
Tukey, J. W. (1993). Tightening the clinical trial. <i>Controlled Clinical Trials</i> <b>14</b> 266–285.
VanderWeele, T. (2008). Simple relations between principal stratification and direct and indirect effects. <i>Statist. Probab. Lett.</i> <b>78</b> 2957–2962.
Wager, S., Du, W., Taylor, J. and Tibshirani, R. J. (2016). High-dimensional regression adjustments in randomized experiments. <i>Proc. Natl. Acad. Sci. USA</i> <b>113</b> 12673–12678.
Yang, S. and Ding, P. (2018). Asymptotic causal inference with observational studies trimmed by the estimated propensity scores. <i>Biometrika</i>. To appear. Available at <a href="https://arxiv.org/abs/1604.07125">https://arxiv.org/abs/1604.07125</a>.
Yang, S., Wang, L. and Ding, P. (2017). Nonparametric identification of causal effects with confounders subject to instrumental missingness. Preprint. Available at <a href="arXiv:1702.03951">arXiv:1702.03951</a>.
Zhang, G. and Little, R. J. (2009). Extensions of the penalized spline of propensity prediction method of imputation. <i>Biometrics</i> <b>65</b> 911–918.
Zhang, J. and Rubin, D. B. (2003). Estimation of causal effects via principal stratification when some outcomes are truncated by “death”. <i>J. Educ. Behav. Stat.</i> <b>28</b> 353–358.
Zhang, J., Rubin, D. B. and Mealli, F. (2009). Likelihood-based analysis of the causal effects of job-training programs using principal stratification. <i>J. Amer. Statist. Assoc.</i> <b>104</b> 166–176.
Zhang, Z., Liu, W., Zhang, B., Tang, L. and Zhang, J. (2016). Causal inference with missing exposure information: Methods and applications to an obstetric study. <i>Stat. Methods Med. Res.</i> <b>25</b> 2053–2066.
Zhou, J., Zhang, Z., Li, Z. and Zhang, J. (2015). Coarsened propensity scores and hybrid estimators for missing data and causal inference. <i>Int. Stat. Rev.</i> <b>83</b> 449–471.