Cauliflower mosaic virus Tav protein induces leaf chlorosis in transgenic tobacco through a host response to virulence function of Tav

Springer Science and Business Media LLC - Tập 81 - Trang 261-270 - 2015
Sumyya Waliullah1, Naomi Kosaka2, Takashi Yaeno1,2, Md. Emran Ali2, Ken-Taro Sekine3, Go Atsumi3, Naoto Yamaoka1,2, Masamichi Nishiguchi1,2, Hideki Takahashi4, Kappei Kobayashi1,2
1The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama, Japan
2Faculty of Agriculture, Ehime University, Matsuyama, Japan
3Iwate Biotechnology Research Center, Kitakami, Japan
4Graduate School of Agricultural Science, Tohoku University, Sendai, Japan

Tóm tắt

To study the precise mechanisms underlying the chlorosis caused by plant viruses, we previously established a synchronous experimental system using transgenic plants expressing Cauliflower mosaic virus multifunctional protein, Tav (transactivator/viroplasmin), under the control of an artificially inducible promoter. Shortly after the induction of Tav expression, pathogenesis-related protein (PR) 1a gene expression is upregulated in the transgenic tobacco lines, which show visible chlorosis within a week. The present study showed that the expression of Tav also induces some salicylic acid (SA)- and ethylene-responsive PR genes. In contrast to transiently expressed Tav, which suppressed Agrobacterium-induced and SA-induced PR1a expression, the artificial induction of Tav from the transgene did not affect SA-induced PR1a expression, rather it alone induced PR1a expression. In a deletion analysis, chlorosis and PR1a induction function in transgenic tobacco were mapped to a region in Tav that had been shown to have a role in pathogenesis in a susceptible host, elicitation of the hypersensitive response in a resistant host, suppression of RNA silencing, and the suppression of Tomato bushy stunt virus P19-mediated cell death in tobacco. The results suggest that Tav-induced chlorosis results from a host response, which accompanies PR1a induction, to pathogenic function of Tav.

Tài liệu tham khảo

Balázs E (1990) Disease symptoms in transgenic tobacco induced by integrated gene VI of cauliflower mosaic virus. Virus Genes 3:205–211 Baughman GA, Jacobs JD, Howell SH (1988) Cauliflower mosaic virus gene VI produces a symptomatic phenotype in transgenic tobacco plants. Proc Natl Acad Sci USA 85:733–737 Bendahmane A, Querci M, Kanyuka K, Baulcombe DC (2000) Agrobacterium transient expression system as a tool for the isolation of disease resistance genes: application to the Rx2 locus in potato. Plant J 21:73–81 Biondi S, Scaramagli S, Capitani F, Altamura MM, Torrigiani P (2001) Methyl jasmonate upregulates biosynthetic gene expression, oxidation and conjugation of polyamines, and inhibits shoot formation in tobacco thin layers. J Exp Bot 52:231–242 Gaffney T, Friedrich L, Vernooij B, Negrotto D, Nye G, Uknes S, Ward E, Kessmann H, Ryals J (1993) Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261:754–756 Haas M, Geldreich A, Bureau M, Dupuis L, Leh V, Vetter G, Kobayashi K, Hohn T, Ryabova L, Yot P, Keller M (2005) The open reading frame VI product of Cauliflower mosaic virus is a nucleocytoplasmic protein: its N terminus mediates its nuclear export and formation of electron-dense viroplasms. Plant Cell 17:927–943 Haas G, Azevedo J, Moissiard G, Geldreich A, Himber C, Bureau M, Fukuhara T, Keller M, Voinnet O (2008) Nuclear import of CaMV P6 is required for infection and suppression of the RNA silencing factor DRB4. EMBO J 27:2102–2112 Hapiak M, Li Y, Agama K, Swade S, Okenka G, Falk J, Khandekar S, Raikhy G, Anderson A, Pollock J, Zellner W, Schoelz J, Leisner SM (2008) Cauliflower mosaic virus gene VI product N-terminus contains regions involved in resistance-breakage, self-association and interactions with movement protein. Virus Res 138:119–129 Hohn T, Rothnie H (2013) Plant pararetroviruses: replication and expression. Curr Opin Virol 3:621–628 Kobayashi K, Hohn T (2003) Dissection of cauliflower mosaic virus transactivator/viroplasmin reveals distinct essential functions in basic virus replication. J Virol 77:8577–8583 Kobayashi K, Hohn T (2004) The avirulence domain of Cauliflower mosaic virus transactivator/viroplasmin is a determinant of viral virulence in susceptible hosts. Mol Plant Microbe Interact 17:475–483 Laird J, McInally C, Carr C, Doddiah S, Yates G, Chrysanthou E, Khattab A, Love AJ, Geri C, Sadanandom A, Smith BO, Kobayashi K, Milner JJ (2013) Identification of the domains of cauliflower mosaic virus protein P6 responsible for suppression of RNA silencing and salicylic acid signalling. J Gen Virol 94:2777–2789 Lawton K, Weymann K, Friedrich L, Vernooij B, Uknes S, Ryals J (1995) Systemic acquired resistance in Arabidopsis requires salicylic acid but not ethylene. Mol Plant Microbe Interact 8:863–870 Liu PP, Bhattacharjee S, Klessig DF, Moffett P (2010) Systemic acquired resistance is induced by R gene-mediated responses independent of cell death. Mol Plant Pathol 11:155–160 Loake G, Grant M (2007) Salicylic acid in plant defence—the players and protagonists. Curr Opin Plant Biol 10:466–472 Love AJ, Yun BW, Laval V, Loake GJ, Milner JJ (2005) Cauliflower mosaic virus, a compatible pathogen of Arabidopsis, engages three distinct defense-signaling pathways and activates rapid systemic generation of reactive oxygen species. Plant Physiol 139:935–948 Love AJ, Laird J, Holt J, Hamilton AJ, Sadanandom A, Milner JJ (2007a) Cauliflower mosaic virus protein P6 is a suppressor of RNA silencing. J Gen Virol 88:3439–3444 Love AJ, Laval V, Geri C, Laird J, Tomos AD, Hooks MA, Milner JJ (2007b) Components of Arabidopsis defense- and ethylene-signaling pathways regulate susceptibility to Cauliflower mosaic virus by restricting long-distance movement. Mol Plant Microbe Interact 20:659–670 Love AJ, Geri C, Laird J, Carr C, Yun BW, Loake GJ, Tada Y, Sadanandom A, Milner JJ (2012) Cauliflower mosaic virus protein P6 inhibits signaling responses to salicylic acid and regulates innate immunity. PLoS ONE 7:e47535 Mochizuki T, Ohki ST (2011) Single amino acid substitutions at residue 129 in the coat protein of cucumber mosaic virus affect symptom expression and thylakoid structure. Arch Virol 156:881–886 Moffett P (2009) Mechanisms of recognition in dominant R gene mediated resistance. Adv Virus Res 75:1–33 Navarro B, Gisel A, Rodio ME, Delgado S, Flores R, Di Serio F (2012) Small RNAs containing the pathogenic determinant of a chloroplast-replicating viroid guide the degradation of a host mRNA as predicted by RNA silencing. Plant J 70:991–1003 Ohshima M, Itoh H, Matsuoka M, Murakami T, Ohashi Y (1990) Analysis of stress-induced or salicylic acid-induced expression of the pathogenesis-related 1a protein gene in transgenic tobacco. Plant Cell 2:95–106 Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta 975:384–394 Pumplin N, Voinnet O (2013) RNA silencing suppression by plant pathogens: defence, counter-defence and counter-counter-defence. Nat Rev Microbiol 11:745–760 Qin J, Zuo K, Zhao J, Ling H, Cao Y, Qiu C, Li F, Sun X, Tang K (2006) Overexpression of GbERF confers alteration of ethylene-responsive gene expression and enhanced resistance to Pseudomonas syringae in transgenic tobacco. J Biosci 31:255–263 Sansregret R, Dufour V, Langlois M, Daayf F, Dunoyer P, Voinnet O, Bouarab K (2013) Extreme resistance as a host counter–counter defense against viral suppression of RNA silencing. PLoS Pathog 9:e1003435 Schoelz J, Shepherd RJ, Daubert S (1986) Region VI of cauliflower mosaic virus encodes a host range determinant. Mol Cell Biol 6:2632–2637 Shimura H, Pantaleo V, Ishihara T, Myojo N, Inaba J, Sueda K, Burgyán J, Masuta C (2011) A viral satellite RNA induces yellow symptoms on tobacco by targeting a gene involved in chlorophyll biosynthesis using the RNA silencing machinery. PLoS Pathog 7:e1002021 Shivaprasad PV, Rajeswaran R, Blevins T, Schoelz J, Meins F Jr, Hohn T, Pooggin MM (2008) The CaMV transactivator/viroplasmin interferes with RDR6-dependent trans-acting and secondary siRNA pathways in Arabidopsis. Nucleic Acids Res 36:5896–5909 Singh NK, Nelson DE, Kuhn D, Hasegawa PM, Bressan RA (1989) Molecular cloning of osmotin and regulation of its expression by ABA and adaptation to low water potential. Plant Physiol 90:1096–1101 Singh DP, Moore CA, Gilliland A, Carr JP (2004) Activation of multiple antiviral defence mechanisms by salicylic acid. Mol Plant Pathol 5:57–63 Smith NA, Eamens AL, Wang MB (2011) Viral small interfering RNAs target host genes to mediate disease symptoms in plants. PLoS Pathog 7:e1002022 Takahashi H, Shimamoto K, Ehara Y (1989) Cauliflower mosaic virus gene VI causes growth suppression, development of necrotic spots and expression of defence-related genes in transgenic tobacco plants. Mol Gen Genet 216:188–194 Tomita R, Sekine KT, Mizumoto H, Sakamoto M, Murai J, Kiba A, Hikichi Y, Suzuki K, Kobayashi K (2011) Genetic basis for the hierarchical interaction between Tobamovirus spp. and L resistance gene alleles from different pepper species. Mol Plant Microbe Interact 24:108–117 Tsuda K, Mine A, Bethke G, Igarashi D, Botanga CJ, Tsuda Y, Glazebrook J, Sato M, Katagiri F (2013) Dual regulation of gene expression mediated by extended MAPK activation and salicylic acid contributes to robust innate immunity in Arabidopsis thaliana. PLoS Genet 9:e1004015 Voinnet O, Rivas S, Mestre P, Baulcombe D (2003) An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J 33:949–956 Waliullah S, Mochizuki T, Sekine K-T, Atsumi G, Ali ME, Yaeno T, Yamaoka N, Nishiguchi M, Kobayashi K (2014) Artificial induction of a plant virus protein in transgenic tobacco provides a synchronous system for analyzing the process of leaf chlorosis. Physiol Mol Plant Pathol 88:43–51 Ward ER, Uknes SJ, Williams SC, Dincher SS, Wiederhold DL, Alexander DC, Ahl-Goy P, Métraux JP, Ryals JA (1991) Coordinate gene activity in response to agents that induce systemic acquired resistance. Plant Cell 3:1085–1094 Wintermantel WM, Anderson EJ, Schoelz JE (1993) Identification of domains within gene VI of cauliflower mosaic virus that influence systemic infection of Nicotiana bigelovii in a light-dependent manner. Virology 196:789–798 Zvereva AS, Pooggin MM (2012) Silencing and innate immunity in plant defense against viral and non-viral pathogens. Viruses 4:2578–2597