Cauchy-type integrals in several complex variables

Bulletin of Mathematical Sciences - Tập 3 - Trang 241-285 - 2013
Loredana Lanzani1, Elias M. Stein2
1Department of Mathematics, University of Arkansas, Fayetteville, USA
2Department of Mathematics, Princeton University, Princeton, USA

Tóm tắt

We present the theory of Cauchy–Fantappié integral operators, with emphasis on the situation when the domain of integration, , has minimal boundary regularity. Among these operators we focus on those that are more closely related to the classical Cauchy integral for a planar domain, whose kernel is a holomorphic function of the parameter . The goal is to prove estimates for these operators and, as a consequence, to obtain estimates for the canonical Cauchy–Szegö and Bergman projection operators (which are not of Cauchy–Fantappié type).

Tài liệu tham khảo

Andersson, M., Passare, M., Sigurdsson, R.: Complex convexity and analytic functionals. Birkhäuser, Basel (2004) Barrett, D.E.: Irregularity of the Bergman projection on a smooth bounded domain. Ann. Math. 119, 431–436 (1984) Barrett, D.E.: Behavior of the Bergman projection on the Diederich-Fornæss worm. Acta Math. 168, 1–10 (1992) Barrett, D., Lanzani, L.: The Leray transform on weighted boundary spaces for convex Rembrandt domains. J. Funct. Anal. 257, 2780–2819 (2009) Bekollé, D., Bonami, A.: Inegalites a poids pour le noyau de Bergman. C. R. Acad. Sci. Paris Ser. A-B 286(18), A775–A778 (1978) Bell, S., Ligocka, E.: A simplification and extension of Fefferman’s theorem on biholomorphic mappings. Invent. Math. 57(3), 283–289 (1980) Bonami, A., Lohoué, N.: Projecteurs de Bergman et Szegő pour une classe de domaines faiblement pseudo-convexes et estimations L p . Compositio Math. 46(2), 159–226 (1982) Charpentier, P., Dupain, Y.: Estimates for the Bergman and Szegő Projections for pseudo-convex domains of finite type with locally diagonalizable Levi forms. Publ. Math. 50, 413–446 (2006) Chen, S.-C., Shaw, M.-C.: Partial differential equations in several complex variables. American Mathematical Society, Providence (2001) David, G.: Opérateurs intégraux singuliers sur certain courbes du plan complexe. Ann. Sci. Éc. Norm. Sup. 17, 157–189 (1984) David, G., Journé, J.L., Semmes, S.: Oprateurs de Caldern-Zygmund, fonctions para-accrtives et interpolation. Rev. Mat. Iberoamericana 1(4), 1–56 (1985) Ehsani, D., Lieb, I.: L p -estimates for the Bergman projection on strictly pseudo-convex non-smooth domains. Math. Nachr. 281, 916–929 (2008) Fefferman, C.: The Bergman kernel and biholomorphic mappings of pseudo-convex domains. Invent. Math. 26, 1–65 (1974) Folland, G.B., Kohn, J.J.: The Neumann problem for the Cauchy–Riemann complex. In: Ann. Math. Studies, vol. 75. Princeton University Press, Princeton (1972) Hansson, T.: On Hardy spaces in complex ellipsoids. Ann. Inst. Fourier (Grenoble) 49, 1477–1501 (1999) Hedenmalm, H.: The dual of a Bergman space on simply connected domains. J. d’ Analyse 88, 311–335 (2002) Henkin, G.: Integral representations of functions holomorphic in strictly pseudo-convex domains and some applications. Mat. Sb. 78, 611–632 (1969). Engl. Transl.: Math. USSR Sb. 7 (1969) 597–616 Henkin, G.M.: Integral representations of functions holomorphic in strictly pseudo-convex domains and applications to the ∂ ¯ -problem. Mat. Sb. 82, 300–308 (1970). Engl. Transl.: Math. USSR Sb. 11 (1970) 273–281 Henkin, G.M., Leiterer, J.: Theory of Functions on Complex Manifolds. Birkhäuser, Basel (1984) Hörmander, L.: Notions of Convexity. Birkhäuser, Basel (1994) Kerzman, N., Stein, E.M.: The Cauchy–Szegö kernel in terms of the Cauchy–Fantappié kernels. Duke Math. J. 25, 197–224 (1978) Krantz, S.: Function theory of several complex variables, 2nd edn. American Mathematical Society, Providence (2001) Krantz, S., Peloso, M.: The Bergman kernel and projection on non-smooth worm domains. Houston J. Math. 34, 873–950 (2008) Lanzani, L., Stein, E.M.: Cauchy–Szegö and Bergman projections on non-smooth planar domains. J. Geom. Anal. 14, 63–86 (2004) Lanzani, L., Stein E.M.: The Bergman projection in L p for domains with minimal smoothness. Illinois J. Math. (to appear) (arXiv:1201.4148) Ligocka, E.: The Hölder continuity of the Bergman projection and proper holomorphic mappings. Studia Math. 80, 89–107 (1984) McNeal, J.: Boundary behavior of the Bergman kernel function in C 2 . Duke Math. J. 58(2), 499–512 (1989) McNeal, J.: Estimates on the Bergman kernel of convex domains. Adv. Math. 109, 108–139 (1994) McNeal, J., Stein, E.M.: Mapping properties of the Bergman projection on convex domains of finite type. Duke Math. J. 73(1), 177–199 (1994) McNeal, J., Stein, E.M.: The Szegö projection on convex domains. Math. Zeit. 224, 519–553 (1997) Nagel, A., Rosay, J.-P., Stein, E.M., Wainger, S.: Estimates for the Bergman and Szegö kernels in C 2 . Ann. Math. 129(2), 113–149 (1989) Phong, D., Stein, E.M.: Estimates for the Bergman and Szegö projections on strongly pseudo-convex domains. Duke Math. J. 44(3), 695–704 (1977) Ramirez, E.: Ein divisionproblem und randintegraldarstellungen in der komplexen analysis. Ann. Math. 184, 172–187 (1970) Range, M.: Holomorphic Functions and Integral Representations in Several Complex Variables. Springer, Berlin (1986) Rudin, W.: Function Theory in the Unit Ball of C n . Springer, Berlin (1980) Stein, E.M.: Boundary Behavior of Holomorphic Functions of Several Complex Variables. Princeton University Press, Princeton (1972) Zeytuncu, Y.: L p -regularity of weighted Bergman projections. Trans. AMS. (2013, to appear)