Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities

International Press of Boston - Tập 189 Số 1 - Trang 79-142 - 2002
James Serrin1, Henguui Zou2
1Department of Mathematics, University of Minnesota
2Department of Mathematics, University of Alabama

Tóm tắt

Từ khóa


Tài liệu tham khảo

Acerbi, E. &Fusco, N., Regularity for minimizers of non-quadratic functionals: the case 1<p<2.J. Math. Anal. Appl., 140 (1989), 115–135.

Astarita, G. & Marrucci, G.,Principles of Non-Newtonian Fluid Mechanics. McGraw-Hill, 1974.

Bidaut-Veron, M.-F., Local and global behavior of solutions of quasilinear equations of Emden-Fowler type.Arch. Rational Mech. Anal., 107 (1989), 293–324.

Bidaut-Veron, M.-F. &Pohozaev, S., Nonexistence results and estimates for some nonlinear elliptic problems.J. Anal. Math., 84 (2001), 1–49.

Bidaut-Veron, M.-F. &Veron, L., Nonlinear elliptic equations on compact Riemannain manifolds and asymptotics of Emden equations.Invent. Math., 106 (1991), 489–539.

Caffarelli, L., Garofalo, N. &Segala, F., A gradient bound for entire solutions of quasi-linear equations and its consequences.Comm. Pure Appl. Math., 47 (1994), 1457–1473.

Caffarelli, L., Gidas, B. &Spruck, J., Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth.Comm. Pure Appl. Math., 42 (1989), 271–297.

Cauchy, A., Mémoire sur les fonctions complémentaires.C. R. Acad. Sci. Paris, 19 (1844), 1377–1384; also (Euvres complètes, Ire série, tome VIII, 378–383.

Díaz, J. I.,Nonlinear Partial Differential Equations and Free Boundaries, Vol. 1. Elliptic Equations. Pitman Res. Notes Math. Ser., 106. Pitman, Boston, MA, 1985.

DiBenedetto, E.,C 1+α local regularity of weak solutions of degenerate elliptic equations.Nonlinear Anal., 7 (1983), 827–850.

Evans, L. C., A new proof of localC 1,α regularity for solutions of certain degenerate elliptic P.D.E..J. Differential Equations, 45 (1982), 356–373.

Gidas, B. &Spruck, J., Global and local behavior of positive solutions of nonlinear elliptic equations.Comm. Pure Appl. Math., 34 (1981), 525–598.

Lewis, J. L., Regularity of the derivatives of solutions to certain degenerate elliptic equations.Indiana Univ. Math. J., 32 (1983), 849–858.

Martinson, L. K. &Pavlov, K. B., The effect of magnetic plasticity in non-Newtonian fluids.Magnit. Gidrodinamika, 2 (1969), 69–75.

—, Unsteady shear flows of a conducting fluid with a rheological power flow.Magnit. Gidrodinamika, 3 (1970), 5869–5875.

Mazzeo, R. &Pacard, F., A construction of singular solutions for a semilinear elliptic equation using asymptotic analysis.J. Differential Geom., 44 (1996), 331–370.

Mikljukov, V. M., On the asymptotic properties of subsolutions of quasilinear equations of elliptic type and mappings with bounded distortion.Mat. Sb. (N.S.), 111 (1980), 42–66 (Russian).

Mitidieri, È. &Pokhozhaev, S. I., the absence of global positive solutions to quasilinear elliptic inequalities.Dokl. Akad. Nauk, 359 (1998), 456–460; English translation inDokl. Math., 57 (1998), 250–253.

Ni, W.-M. &Serrin, J., Existence and non-existence theorems for ground states of quasilinear partial differential equations: The anomalous case.Atti Convegni Lincei, 77 (1986), 231–257.

Peletier, L. A. &Serrin, J., Gradient bounds and Liouville theorems for quasilinear elliptic equations.Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 5 (1978), 65–104.

Protter, M. H. &Weinberger, H. F.,Maximum Principles in Differential Equations. Springer-Verlag, New York, 1984 (reprinted).

Reshetnyak, Yu. G., Index boundedness condition for mappings with bounded distortion.Siberian Math. J., 9 (1968), 281–285.

Serrin, J., Local behavior of solutions of quasi-linear equations.Acta Math., 111 (1964), 247–302.

—, Isolated singularities of solutions of quasi-linear equations.Acta Math., 113 (1965), 219–240.

—, Entire solutions of nonlinear Poisson equations.Proc. London Math. Soc. (3), 24 (1972), 348–366.

—, Liouville theorems for quasilinear elliptic equations, inAtti del Convegno Internazionale sui Metodi Valutativi nella Fisica-Matematica (Rome, 1975), pp. 207–215. Accad. Naz. Lincei, Quaderno 217. Accad. Naz. Lincei, Rome, 1975.

Tolksdorf, P., Regularity for a more general class of quasilinear elliptic equations.J. Differential Equations, 51 (1984), 126–150.

Trudinger, N. S., On Harnack type inequalities and their applications to quasilinear elliptic equations.Comm. Pure Appl. Math., 20 (1967), 721–747.

Uhlenbeck, K., Regularity for a class of non-linear elliptic systems.Acta Math., 138 (1977), 219–240.

Ural'tseva, N. N., Degenerate quasilinear elliptic systems.Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 7 (1968), 184–222 (Russian).

Veron, L.,Singularities of Solutions of Second Order Quasilinear Equations. Pitman Res. Notes Math. Ser., 353. Longman, Harlow, 1996.

Zou, H., Slow decay and the Harnack inequality for positive solutions of Δu+up=0 inR n.Differential Integral Equations, 8 (1995), 1355–1368.

—, Symmetry of positive solutions of Δu+up=0 inR n.J. Differential Equations, 120 (1995), 46–88.

Dancer, E. N., Superlinear problems on domains with holes of asymptotic shape and exterior problems.Math. Z., 229 (1998), 475–491.