Cattle behavior recognition based on feature fusion under a dual attention mechanism

Cheng Shang1, Feng Wu1, MeiLi Wang1,2,3, Qiang Gao4
1College of Information Engineering, Northwest A&F University, Yangling 712100, China
2Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture, Yangling 712100, China
3Shaanxi Key Laboratory of Agricultural Information Perception and Intelligent Service, Yangling 712100, China
4College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China

Tài liệu tham khảo

Taylor, 2000, Protozoal disease in cattle and sheep, Practice, 22, 604, 10.1136/inpract.22.10.604 Choutas, V. , Weinzaepfel, P. , Revaud, J. , & Schmid, C. . (2018). PoTion: Pose MoTion Representation for Action Recognition. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE. Gao, R. , Xiong, B. , & Grauman, K. . (2017). Im2flow: motion hallucination from static images for action recognition. Feichtenhofer, 2018 Wang, X. , Girshick, R. , Gupta, A. , & He, K. . (2017). Non-local neural networks. Yang, 2017 Li, W. , Wang, Z. , Yin, B. , Peng, Q. , Du, Y. , & Xiao, T. , et al. (2019). Rethinking on multi-stage networks for human pose estimation. Iandola, F. N. , Han, S. , Moskewicz, M. W. , Ashraf, K. , Dally, W. J. , & Keutzer, K. . (2016). Squeezenet: alexnet-level accuracy with 50x fewer parameters and <0.5mb model size. Chollet, F. . (2017). Xception: Deep Learning with Depthwise Separable Convolutions. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE. Howard, A. G. , Zhu, M. , Chen, B. , Kalenichenko, D. , Wang, W. , & Weyand, T. , et al. (2017). Mobilenets: efficient convolutional neural networks for mobile vision applications. Zhang, X. , Zhou, X. , Lin, M. , & Sun, J. . (2017). Shufflenet: an extremely efficient convolutional neural network for mobile devices. Sandler, 2018, Mobilenetv2: inverted residuals and linear bottlenecks, IEEE. Ma, 2018 Howard, A. , Sandler, M. , Chu, G. , Chen, L. C. , Chen, B. , & Tan, M. , et al. (2019). Searching for mobilenetv3. Roy, 2018 Woo, S. , Park, J. , Lee, J. Y. , & Kweon, I. S. . (2018). CBAM: Convolutional Block Attention Module. European Conference on Computer Vision. Springer, Cham. Zin, T. T., Misawa, S., Pwint, M. Z., Thant, S., Seint, P. T., Sumi, K., & Yoshida, K. (2020, March). Cow Identification System using Ear Tag Recognition. In2020 IEEE 2nd Global Conference on Life Sciences and Technologies (LifeTech)(pp. 65-66). IEEE. Ng, M. L., Leong, K. S., Hall, D. M., & Cole, P. H. (2005, August). A small passive UHF RFID tag for livestock identification. In2005 IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications(Vol. 1, pp. 67-70). IEEE. Ketprom, U., Mitrpant, C., Makhapun, P., Makwimanloy, S., & Laokok, S. (2011, March). RFID for cattle traceability system at animal checkpoint. In2011 Annual SRII Global Conference(pp. 517-521). IEEE. Wang, Z., Fu, Z., Chen, W., & Hu, J. (2010, October). A RFID-based traceability system for cattle breeding in China. In2010 International Conference on Computer Application and System Modeling (ICCASM 2010)(Vol. 2, pp. V2-567). IEEE. Volk, T., & Jansen, D. (2012, June). Implantable RFID sensor platform to monitor vital functions of small animals controlled by network based software. InSmart SysTech 2012; European Conference on Smart Objects, Systems and Technologies(pp. 1-6). VDE. Qiao, Y., Su, D., Kong, H., Sukkarieh, S., Lomax, S., & Clark, C. (2020, August). BiLSTM-based individual cattle identification for automated precision livestock farming. In2020 IEEE 16th International Conference on Automation Science and Engineering (CASE)(pp. 967-972). IEEE. Qiao, 2019, Individual cattle identification using a deep learning based framework, IFAC-PapersOnLine, 52, 318, 10.1016/j.ifacol.2019.12.558 Zin, T. T., Phyo, C. N., Tin, P., Hama, H., & Kobayashi, I. (2018, March). Image technology based cow identification system using deep learning. InProceedings of the International MultiConference of Engineers and Computer Scientists(Vol. 1, pp. 236-247). Qin, 2019, Pig face recognition algorithm based on bilinear convolution neural network, Journal of Hangzhou Dianzi University, 39, 12 He, D. J., Liu, J. M., Xiong, H. T., Lu, Z. Z. . (2020). “Individual Identification of Dairy Cows Based on Improved YOLO v3”, Transactions of the Chinese Society for Agricultural Machinery, vol. 51,no. 4 ,pp. 250-260, 2020. Tang, 2019, Salient object detection of dairy goats in farm image based on background and foreground priors, Neurocomputing, 332, 270, 10.1016/j.neucom.2018.12.052 Dong, 2018, Dairy goat detection based on faster r-cnn from surveillance video, Computers and Electronics in Agriculture, 154, 443, 10.1016/j.compag.2018.09.030 Lin, T. Y., Goyal, P., Girshick, R., He, K., & Dollár, P. (2017). Focal loss for dense object detection. InProceedings of the IEEE international conference on computer vision(pp. 2980-2988). Zhong, 2021, Attention-guided Image Captioning with Adaptive Global and Local Feature Fusion, Journal of Visual Communication and Image Representation, 78, 103138, 10.1016/j.jvcir.2021.103138 Tian, 2019, Weighted correlation filters guidance with spatial-temporal attention for online multi-object tracking, Journal of Visual Communication and Image Representation, 63, 102576, 10.1016/j.jvcir.2019.102576 Jiang, 2020, Spatial-temporal saliency action mask attention network for action recognition, Journal of Visual Communication and Image Representation, 71, 102846, 10.1016/j.jvcir.2020.102846 Su, 2020, Convolutional neural network with adaptive inferential framework for skeleton-based action recognition, Journal of Visual Communication and Image Representation, 73 Zhang, 2020, SAR-NAS: Skeleton-based action recognition via neural architecture searching, Journal of Visual Communication and Image Representation, 73, 102942, 10.1016/j.jvcir.2020.102942 Delaitre, 2010, Recognizing human actions in still images: a study of bag-of-features and part-based representations, British Machine Vision Conference. DBLP.