Các carbon xốp từ hoa bấc (Typha angustifolia) làm vật liệu hỗ trợ cho các chất xúc tác Ni và Cu được điện phân trong quá trình hiđro hóa methyl levulinate thành γ-valerolactone

Biomass Conversion and Biorefinery - Tập 13 - Trang 12631-12641 - 2021
Napat Kaewtrakulchai1,2, Wachiraporn Gunpum1, Masayoshi Fuji3, Apiluck Eiad-Ua1
1College of Materials Innovation and Technology King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand
2Kasetsart Agricultural and Agro-Industrial Product Improvement Institute, Kasetsart University, Bangkhen, Thailand
3Advanced Ceramic Center, Nagoya Institute of Technology, Tajimi, Japan

Tóm tắt

Quy trình tổng hợp các chất xúc tác kim loại được hỗ trợ bằng carbon đã được phát triển hoàn toàn bằng phương pháp điện phân. Một chất hỗ trợ bằng carbon được chuẩn bị từ hoa bấc (Typha angustifolia) như một tiền chất sinh học thông qua quá trình thuỷ nhiệt kết hợp với carbon hóa. Các loại carbon được chuẩn bị cho thấy diện tích bề mặt lớn, tính xốp cao và khả năng dẫn điện xuất sắc, đây là những đặc điểm liên quan đến các vật liệu được sử dụng làm chất hỗ trợ cho chất xúc tác kim loại. Trong nghiên cứu này, kỹ thuật điện phân đã được áp dụng để tổng hợp chất xúc tác được sử dụng trong quá trình hiđro hóa methyl levulinate thành γ-valerolactone. Các tham số thí nghiệm thú vị trong quá trình điện phân như tiền chất kim loại (Ni và Cu), nhiệt độ dung dịch (40, 45, 50, 55 và 60 °C), và điện áp áp dụng (3.0, 3.5, 4.0, 4.5 và 5.0 V) đã được điều tra kỹ lưỡng trên một số đặc tính của các chất xúc tác. Các đặc tính vật lý hóa học của các chất xúc tác được nghiên cứu đã được đặc trưng một cách toàn diện bằng cách sử dụng kính hiển vi điện tử quét có độ phân giải cao (HRSEM) được trang bị quang phổ năng lượng phân tán (EDS) và tia ion tập trung (FIB), nhiễu xạ tia X (XRD), và máy phân tích hấp thụ nitrogen để kiểm tra hình thái bề mặt, thành phần nguyên tố, phân bố kim loại trong mặt cắt, độ tinh thể, và đặc tính xốp hình thái, tương ứng. Trong quá trình điện phân, nhiệt độ dung dịch 50 °C với điện áp áp dụng 4 V là điều kiện tối ưu cho việc tổng hợp chất xúc tác với pha kim loại đồng nhất và độ phân tán kim loại cao trên chất hỗ trợ carbon. Các chất xúc tác Ni-carbon và Cu-carbon cho thấy hoạt tính xúc tác xuất sắc với mức chuyển đổi methyl levulinate lần lượt là 32.68% và 29.17%.

Từ khóa

#hóa học vật liệu #chất xúc tác kim loại #điện phân #carbon xốp #hiđro hóa

Tài liệu tham khảo

Balat M, Balat H (2009) Recent trends in global production and utilization of bio-ethanol fuel. Appl Energy 86:2273–2282 Demirbas A (2005) Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods. Prog Energy Combust Sci 31:466–487 Nisar J, Razaq R, Farooq M, Iqbal M, Khan RA, Sayed M, Shah A, Rahman IU (2017) Enhanced biodiesel production from Jatropha oil using calcined waste animal bones as catalyst. Renewable Energy 101:111–119 Zhao C, Lv P, Yang L, Xing S, Luo W, Wang Z (2018) Biodiesel synthesis over biochar-based catalyst from biomass waste pomelo peel. Energy Convers Manage 160:477–485 Numwong N, Luengnaruemitchai A, Chollacoop N, Yoshimura Y (2012) Effect of SiO2 pore size on partial hydrogenation of rapeseed oil-derived FAMEs. Appl Catal A 441–442:72–78 Papadopoulos CE, Lazaridou A, Koutsoumba A, Kokkinos N, Christoforidis A, Nikolaou N (2010) Optimization of cotton seed biodiesel quality (critical properties) through modification of its FAME composition by highly selective homogeneous hydrogenation. Bioresour Technol 101:1812–1819 Horváth IT, Mehdi H, Fábos V, Boda L, Mika LT (2008) γ-Valerolactone—a sustainable liquid for energy and carbon-based chemicals. Green Chem 10:238–242 Lin Z, Cai X, Fu Y, Zhu W, Zhang F (2017) Cascade catalytic hydrogenation–cyclization of methyl levulinate to form γ-valerolactone over Ru nanoparticles supported on a sulfonic acid-functionalized UiO-66 catalyst. RSC Adv 7:44082–44088 Ruppert AM, Grams J, Jedrzejczyk M, Matras-Michalska J, Keller N, Ostojska K, Sautet P (2015) Titania-supported catalysts for levulinic acid hydrogenation: influence of support and its impact on gamma-valerolactone yield. Chemsuschem 8:1538–1547 Sudhakar M, Kumar VV, Naresh G, Kantam ML, Bhargava SK, Venugopal A (2016) Vapor phase hydrogenation of aqueous levulinic acid over hydroxyapatite supported metal (M = Pd, Pt, Ru, Cu, Ni) catalysts. Appl Catal B 180:113–120 Wei Z, Li X, Deng J, Wang J, Li H, Wang Y (2018) Improved catalytic activity and stability for hydrogenation of levulinic acid by Ru/N-doped hierarchically porous carbon, Molecular. Catalysis 448:100–107 Funkenbusch LT, Mullins ME, Salam MA, Creaser D, Olsson L (2019) Catalytic hydrotreatment of pyrolysis oil phenolic compounds over Pt/Al2O3 and Pd/C. Fuel 243:441–448 H-S Lee, H Seo, D Kim, Y-W Lee (2020) One-pot supercritical transesterification and partial hydrogenation of soybean oil in the presence of Pd/Al2O3 or Cu or Ni catalyst without H2, The Journal of Supercritical Fluids, 156 Li C, Xu G, Zhai Y, Liu X, Ma Y, Zhang Y (2017) Hydrogenation of biomass-derived ethyl levulinate into γ-valerolactone by activated carbon supported bimetallic Ni and Fe catalysts. Fuel 203:23–31 Li YY, Yu SL, Shen WY, Gao JX (2015) Iron-, cobalt-, and nickel-catalyzed asymmetric transfer hydrogenation and asymmetric hydrogenation of ketones. Acc Chem Res 48:2587–2598 Zhou M, Li J, Wang K, Xia H, Xu J, Jiang J (2017) Selective conversion of furfural to cyclopentanone over CNT-supported Cu based catalysts: model reaction for upgrading of bio-oil. Fuel 202:1–11 X Feng, Y Tian, L Xiao, W Wu (2020) Fe–Mo2C: a magnetically recoverable catalyst for hydrogenation of ethyl levulinate into γ-valerolactone, Catalysis Letters 150:2027–2037 Gowda RR, Chen EY (2016) Recyclable earth-abundant metal nanoparticle catalysts for selective transfer hydrogenation of levulinic acid to produce gamma-valerolactone. Chemsuschem 9:181–185 Quiroz J, Mai EF, Teixeira da Silva V (2015) Synthesis of nanostructured molybdenum carbide as catalyst for the hydrogenation of levulinic acid to γ-valerolactone. Top Catal 59:148–158 Xu Q, Li X, Pan T, Yu C, Deng J, Guo Q, Fu Y (2016) Supported copper catalysts for highly efficient hydrogenation of biomass-derived levulinic acid and γ-valerolactone. Green Chem 18:1287–1294 Alzaid A, Wiens J, Adjaye J, Smith KJ (2018) Impact of molecular structure on the hydrogenation and oligomerization of diolefins over a Ni-Mo-S/γ-Al2O3 catalyst. Fuel 221:206–215 He Y, Yan L, Liu Y, Liu Y, Bai Y, Wang J, Li F (2019) Effect of SiO2/Al2O3 ratios of HZSM-5 zeolites on the formation of light aromatics during lignite pyrolysis. Fuel Process Technol 188:70–78 Lam SS, Liew RK, Wong YM, Azwar E, Jusoh A, Wahi R (2016) Activated carbon for catalyst support from microwave pyrolysis of orange peel. Waste and Biomass Valorization 8:2109–2119 Yang Y, Sun C-J, Brown DE, Zhang L, Yang F, Zhao H, Wang Y, Ma X, Zhang X, Ren Y (2016) A smart strategy to fabricate Ru nanoparticle inserted porous carbon nanofibers as highly efficient levulinic acid hydrogenation catalysts. Green Chem 18:3558–3566 Zhang T, Li W, Xu Z, Liu Q, Ma Q, Jameel H, Chang HM, Ma L (2016) Catalytic conversion of xylose and corn stalk into furfural over carbon solid acid catalyst in gamma-valerolactone. Bioresour Technol 209:108–114 Pinto BP, Fortuna ALL, Cardoso CP, Mota CJA (2017) Hydrogenation of levulinic acid (LA) to γ-valerolactone (GVL) over Ni–Mo/C catalysts and water-soluble solvent systems. Catal Lett 147:751–757 ET Sayed, H Alawadhi, K Elsaid, AG Olabi, M Adel, Almakrani, ST Bin Tamim GHM, Alafranji, MA Abdelkareem (2020) A carbon-cloth anode electroplated with iron nanostructure for microbial fuel cell operated with real wastewater. Sustainability 12:2–11 J Huang, M Chen, T Tang, W Liu, Y Liu (2020) Electroplated synthesis of semi-rigid MoS2–rGO–Cu as efficient self-supporting electrode for hydrogen evolution reaction. Electrochimica Acta 355:136754 Jang K-H, Lee S-H, Han Y, Yoon S-H, Lee C-S (2016) Synthesis and characteristics of silica-coated carbon nanofibers on electroplated Co–Ni/C-fiber textiles. J Nanosci Nanotechnol 16:10767–10771 Eshghi A, Kheirmand M (2018) Electroplating of Pt–Ni–Cu nanoparticles on glassy carbon electrode for glucose electro-oxidation process. Surface Engineering 35:128–134 Bai C-X, Shen F, Qi X-H (2017) Preparation of porous carbon directly from hydrothermal carbonization of fructose and phloroglucinol for adsorption of tetracycline. Chin Chem Lett 28:960–962 Xiao P-W, Meng Q, Zhao L, Li J-J, Wei Z, Han B-H (2017) Biomass-derived flexible porous carbon materials and their applications in supercapacitor and gas adsorption. Mater Des 129:164–172 Cai F, Jiang C, Wu X (2014) X-ray diffraction characterization of electrodeposited Ni–Al composite coatings prepared at different current densities. J Alloy Compd 604:292–297 Maharana HS, Bishoyi B, Basu A (2019) Current density dependent microstructure and texture evolution and related effects on properties of electrodeposited Ni-Al coating. J Alloy Compd 787:483–494 Thiagarajan S, Thaiyan M, Ganesan R (2016) Physical vapor deposited highly oriented V2O5 thin films for electrocatalytic oxidation of hydrazine. RSC Adv 6:82581–82590 Vogel YB, Darwish N, Kashi MB, Gooding JJ, Ciampi S (2017) Hydrogen evolution during the electrodeposition of gold nanoparticles at Si(100) photoelectrodes impairs the analysis of current-time transients. Electrochim Acta 247:200–206 Góral A (2017) Nanoscale structural defects in electrodeposited Ni/Al 2 O 3 composite coatings. Surf Coat Technol 319:23–32 Wang Z, Liu J, Qin C, Yu H, Xia X, Wang C, Zhang Y, Hu Q, Zhao W (2015) Dealloying of Cu-based metallic glasses in acidic solutions: products and energy storage applications. Nanomaterials (Basel) 5:697–721 Wasekar NP, Haridoss P, Seshadri SK, Sundararajan G (2016) Influence of mode of electrodeposition, current density and saccharin on the microstructure and hardness of electrodeposited nanocrystalline nickel coatings. Surf Coat Technol 291:130–140 Wang X, Zeng W, Hong L, Xu W, Yang H, Wang F, Duan H, Tang M, Jiang H (2018) Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates, Nature. Energy 3:227–235 Xu S, Yu D, Ye T, Tian P (2017) Catalytic transfer hydrogenation of levulinic acid to γ-valerolactone over a bifunctional tin catalyst. RSC Adv 7:1026–1031 Bui L, Luo H, Gunther WR, Román-Leshkov Y (2013) Domino reaction catalyzed by zeolites with Brønsted and Lewis acid sites for the production of γ-valerolactone from furfural. Angew Chem 125:8180–8183 N Lázaro, A Franco, W Ouyang, A Balu, A Romero, R Luque, A Pineda (2019) Continuous-flow hydrogenation of methyl levulinate promoted by Zr-based mesoporous materials. Catalysts 9:1–13 Gong W, Chen C, Fan R, Zhang H, Wang G, Zhao H (2018) Transfer-hydrogenation of furfural and levulinic acid over supported copper catalyst. Fuel 231:165–171 Tanwongwan W, Eiad-ua A, Kraithong W, Viriya-empikul N, Suttisintong K, Klamchuen A, Kasamechonchung P, Khemthong P, Faungnawakij K, Kuboon S (2019) Simultaneous activation of copper mixed metal oxide catalysts in alcohols for gamma-valerolactone production from methyl levulinate. Appl Catal A 579:91–98