Tương tác cation-anion, độ ổn định và phổ IR của các chất lỏng ion hai lần có nguồn gốc từ amino acid được nghiên cứu bằng lý thuyết chức năng mật độ

Journal of Molecular Modeling - Tập 27 - Trang 1-12 - 2021
Muraledharan Shyama1, Senthilkumar Lakshmipathi1
1Department of Physics, Bharathiar University, Coimbatore, India

Tóm tắt

Trong công trình nghiên cứu này, chúng tôi đã nghiên cứu lý thuyết về các chất lỏng ion hai lần (DILs) được cấu thành từ dication methylimidazolium geminal với các anion amino acid và các cấu trúc cách điệu khác nhau sử dụng lý thuyết chức năng mật độ. DILs có nguồn gốc từ amino acid hình thành thông qua các liên kết hydro C-H···O mạnh. Những liên kết hydro này đóng một vai trò quan trọng trong việc ổn định DILs. Năng lượng tương tác cation-anion cao hơn theo thứ tự năng lượng liên kết cộng hóa trị và mật độ chất lỏng của các DILs ngụ ý rằng chúng có độ ổn định nhiệt cao hơn so với các dẫn xuất đơn. Tần số kéo dài C–H đều nằm trên 3100 cm−1 trong tất cả các phức hợp và tạo thành dấu hiệu đặc trưng cho DILs. Thú vị thay, các anion amino acid aliphatic và aromatic cho thấy các tính chất phân tử tương tự. Tổng thể, các DILs được cấu tạo từ amino acid thể hiện độ ổn định cao và độ căng bề mặt lớn và không độc hại về mặt hóa học; do đó, chúng có thể thay thế các DILs vô cơ.

Từ khóa

#ionic liquids #amino acids #dications #hydrogen bonding #density functional theory

Tài liệu tham khảo

Kaczmarek DK, Czerniak K, Klejdysz T (2018) Dicationic ionic liquids as new feeding deterrents. Chem Pap 72(10):2457–2466 Silvester DS (2011) Recent advances in the use of ionic liquids for electrochemical sensing. Analyst 136(23):4871–4882 Plechkova NV, Seddon KR (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 37(1):123–150 Bardak C, Atac A, Bardak F (2019) Effect of the external electric field on the electronic structure, spectroscopic features, NLO properties, and interionic interactions in ionic liquids: a DFT approach. J Mol Liq 273:314–325 Rao SS, Gejji SP (2016) Electronic structure, NMR, spin–spin coupling, and noncovalent interactions in aromatic amino acid based ionic liquids. J Phys Chem A 120(28):5665–5684 Fumino K et al (2011) The influence of hydrogen bonding on the physical properties of ionic liquids. Phys Chem Chem Phys 13(31):14064–14075 Brennecke JF, Maginn EJ (2001) Ionic liquids: innovative fluids for chemical processing. AICHE J 47(11):2384–2389 Tokuda H et al (2005) Physicochemical properties and structures of room temperature ionic liquids. 2. Variation of alkyl chain length in imidazolium cation. J Phys Chem B 109(13):6103–6110 Lovelock KRJ et al (2009) Vaporisation of a dicationic ionic liquid. ChemPhysChem 10(2):337–340 Alavi SM, Yeganegi S (2019) Computational study of halogen-free Boron based dicationic ionic liquids of [bis-Mim][BMB]2 and [bis-Mim][BScB]2. Spectrochim Acta A Mol Biomol Spectrosc 210:181–192 Zafer C et al (2009) Dicationic bis-imidazolium molten salts for efficient dye sensitized solar cells: synthesis and photovoltaic properties. Electrochim Acta 54(24):5709–5714 Khan AS et al (2017) Dicationic imidazolium based ionic liquids: synthesis and properties. J Mol Liq 227:98–105 Chen J et al (2018) Dicationic ionic liquid: a novel method for improving the isomerization degree of n-pentane. Energy Fuel 32(4):5518–5526 Fang D, Yang J, Jiao C (2011) Dicationic ionic liquids as environmentally benign catalysts for biodiesel synthesis. ACS Catal 1(1):42–47 Anderson JL et al (2005) Structure and properties of high stability geminal dicationic ionic liquids. J Am Chem Soc 127(2):593–604 Kumar Sahu P, Ghosh A, Sarkar M (2015) Understanding structure–property correlation in monocationic and dicationic ionic liquids through combined fluorescence and pulsed-field gradient (PFG) and relaxation NMR experiments. J Phys Chem B 119(44):14221–14235 Yeganegi S, Soltanabadi A, Farmanzadeh D (2012) Molecular dynamic simulation of dicationic ionic liquids: effects of anions and alkyl chain length on liquid structure and diffusion. J Phys Chem B 116(37):11517–11526 Fumino K, Ludwig R (2014) Analyzing the interaction energies between cation and anion in ionic liquids: the subtle balance between coulomb forces and hydrogen bonding. J Mol Liq 192:94–102 Niemann T et al (2018) Spectroscopic evidence for an attractive cation–cation interaction in hydroxy-functionalized ionic liquids: a hydrogen-bonded chain-like trimer. Angew Chem Int Ed 57(47):15364–15368 Wu Y, Zhang T (2009) Structural and electronic properties of amino acid based ionic liquids: a theoretical study. J Phys Chem A 113(46):12995–13003 Kirchhecker S, Esposito D (2016) Amino acid based ionic liquids: a green and sustainable perspective. Curr Opin Green Sustain Chem 2:28–33 Fukumoto K, Yoshizawa M, Ohno H (2005) Room temperature ionic liquids from 20 natural amino acids. J Am Chem Soc 127(8):2398–2399 Fujiwara S et al (2018) Design of dication-type amino acid ionic liquids and their application to self-assembly media of amphiphiles. Bull Chem Soc Jpn 91(1):1–5 Huang SJ, Yin AW, Wu CB (2013) Synthesis of chiral geminal dicationic ionic liquid from amino acids. Asian J Chem 25(11):5405–5406 Kawadkar DV, Zodape SP (2019) Thermophysical properties of dicationic ionic liquids under the influence of amino acid. J Chem Eng Data 64(2):421–432 Haddad B et al (2019) Para-xylyl linked bis-imidazolium ionic liquids: a study of the conformers of the cation and of the anion-cation hydrogen bonding. J Mol Struct 1175:175–184 Shirota H et al (2011) Comparison between dicationic and monocationic ionic liquids: liquid density, thermal properties, surface tension, and shear viscosity. J Chem Eng Data 56(5):2453–2459 Hooshyari K, Javanbakht M, Adibi M (2016) Novel composite membranes based on PBI and dicationic ionic liquids for high temperature polymer electrolyte membrane fuel cells. Electrochim Acta 205:142–152 Ding Y-S et al (2007) Synthesis, characterization and properties of geminal imidazolium ionic liquids. Colloids Surf A Physicochem Eng Asp 298(3):201–205 Boumediene M et al (2019) Synthesis, thermal stability, vibrational spectra and conformational studies of novel dicationic meta-xylyl linked bis-1-methylimidazolium ionic liquids. J Mol Struct 1186:68–79 Chinnappan A et al (2017) Mn nanoparticles decorated on the ionic liquid functionalized multiwalled carbon nanotubes as a supercapacitor electrode material. Chem Eng J 316:928–935 Frisch MJ et al (2009) Gaussian 09. Gaussian, Inc., Wallingford Grimme S et al (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132(15):154104 Stefan G (2004) Accurate description of van der Waals complexes by density functional theory including empirical corrections. J Comput Chem 25(12):1463–1473 Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592 te Velde G et al (2001) Chemistry with ADF. J Comput Chem 22(9):931–967 Sun H et al (2009) Geometrical and electronic structures of the dication and ion pair in the geminal dicationic ionic liquid 1,3-bis[3-methylimidazolium-yl]propane bromide. J Mol Struct THEOCHEM 900(1):37–43 Patil RA et al (2016) Synthesis of thermally stable geminal dicationic ionic liquids and related ionic compounds: an examination of physicochemical properties by structural modification. Chem Mater 28(12):4315–4323 Shyama M, Lakshmipathi S (2019) Structural Chemistry 30:185–194 Zaitsau DH et al (2016) Dispersion and hydrogen bonding rule: why the vaporization enthalpies of aprotic ionic liquids are significantly larger than those of protic ionic liquids. Angew Chem Int Ed 55(38):11682–11686 Jeon Y et al (2008) Structures of ionic liquids with different anions studied by infrared vibration spectroscopy. J Phys Chem B 112(15):4735–4740 Senthilkumar L et al (2013) Density functional theory investigation of cocaine water complexes. J Mol Model 19(8):3411–3425 Senthilkumar L, Ghanty TK, Ghosh SK (2005) Electron density and energy decomposition analysis in hydrogen-bonded complexes of azabenzenes with water, acetamide, and thioacetamide. J Phys Chem A 109(33):7575–7582 Karthika M, Senthilkumar L, Kanakaraju R (2014) Hydrogen-bond interactions in hydrated 6-selenoguanine tautomers: a theoretical study. Struct Chem 25(1):197–213 Senthilkumar L, Kolandaivel P (2006) Molecular interaction study of formohydroxamic acid (FHA) with water. J Mol Struct 791(1):149–157 Umadevi V, Senthilkumar L, Kolandaivel P (2013) Theoretical investigations on the hydrogen bonding of nitrile isomers with H2O, HF, NH3 and H2S. Mol Simul 39(11):908–921 Karthika M, Senthilkumar L, Kanakaraju R (2012) Theoretical studies on hydrogen bonding in caffeine–theophylline complexes. Comput Theor Chem 979:54–63 Koch U, Popelier PLA (1995) Characterization of C-H-O hydrogen bonds on the basis of the charge density. J Phys Chem 99(24):9747–9754 Rozas I, Alkorta I, Elguero J (2000) Behavior of ylides containing N, O, and C atoms as hydrogen bond acceptors. J Am Chem Soc 122(45):11154–11161 Lalitha M, Senthilkumar L (2014) DFT study on X−·(H2O)n=1-10 (X=OH, NO2, NO3, CO3) anionic water cluster. J Mol Graph Model 54:148–163 Senthilkumar L et al (2012) Hydrogen-bonded complexes of nicotine with simple alcohols. Int J Quantum Chem 112(16):2787–2793 Priya AM, Senthilkumar L, Kolandaivel P (2014) Hydrogen-bonded complexes of serotonin with methanol and ethanol: a DFT study. Struct Chem 25(1):139–157 Karthika M, Kanakaraju R, Senthilkumar L (2013) Spectroscopic investigations and hydrogen bond interactions of 8-aza analogues of xanthine, theophylline and caffeine: a theoretical study. J Mol Model 19(4):1835–1851 Zhang H et al (2019) Thermophysical properties of dicationic imidazolium-based ionic compounds for thermal storage. J Mol Liq 282:474–483 Dong K, Zhang S, Wang J (2016) Understanding the hydrogen bonds in ionic liquids and their roles in properties and reactions. Chem Commun 52(41):6744–6764 Zahn S et al (2014) Understanding ionic liquids from theoretical methods. J Mol Liq 192:71–76 Wulf A, Fumino K, Ludwig R (2010) Spectroscopic evidence for an enhanced anion–cation interaction from hydrogen bonding in pure imidazolium ionic liquids. Angew Chem Int Ed 49(2):449–453 Shahrom M, Wilfred CD (2014) Synthesis and thermal properties of amino acids ionic liquids (AAILS). J Appl Sci 14:1067–1072 Katsyuba SA et al (2007) Application of density functional theory and vibrational spectroscopy toward the rational design of ionic liquids. J Phys Chem A 111(2):352–370 Bodo E, Caminiti R (2010) The structure of geminal imidazolium bis(trifluoromethylsulfonyl)amide ionic liquids: a theoretical study of the gas phase ionic complexes. J Phys Chem A 114(47):12506–12512 Horinaka J, Urabayashi Y, Takigawa T (2018) Effects of side groups on entanglement network of cellulosic polysaccharides. Cellulose 22:2305–2310 Horinaka J-I, Yasuda R, Takigawa T (2011) Entanglement properties of cellulose and amylose in an ionic liquid. J Polym Sci B Polym Phys 49(13):961–965 Bhattacharjee A, Carvalho PJ, Coutinho JAP (2014) The effect of the cation aromaticity upon the thermophysical properties of piperidinium- and pyridinium-based ionic liquids. Fluid Phase Equilib 375:80–88 Urahata SM, Ribeiro MCC (2004) Structure of ionic liquids of 1-alkyl-3-methylimidazolium cations: a systematic computer simulation study. J Chem Phys 120(4):1855–1863 Lee JH et al (2019) Effect of temperature on separation performance in ionic liquid/Ag nanocomposite membranes for olefin/paraffin mixtures. J Ind Eng Chem 74:103–107 Bazbouz MB et al (2019) Dry-jet wet electrospinning of native cellulose microfibers with macroporous structures from ionic liquids. J Appl Polym Sci 136(10):47153 Bodo E, Migliorati V (2011) Theoretical Description of Ionic Liquids, Ionic Liquids - Classes and Properties, Prof. Scott Handy (Ed.), Farmanzadeh D, Soltanabadi A, Yeganegi S (2013) DFT study of the geometrical and electronic structures of geminal dicationic ionic liquids 1,3-bis[3-methylimidazolium-1-yl]hexane halides. J Chin Chem Soc 60(5):551–558 Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab Initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98(45):11623–11627 Van Lenthe E, Baerends EJ (2003) Optimized slater-type basis sets for the elements 1–118. J Comput Chem 24:1142–1156 Ludwig R (2015) The effect of dispersion forces on the interaction energies and far infrared spectra of protic ionic liquids. Phys Chem Chem Phys 17(21):13790–13793 Izgorodina EI et al (2014) Importance of dispersion forces for prediction of thermodynamic and transport properties of some common ionic liquids. Phys Chem Chem Phys 16(16):7209–7221 Fukaya Y et al (2007) Bio ionic liquids: room temperature ionic liquids composed wholly of biomaterials. Green Chem 9(11):1155–1157 Kolbeck C et al (2010) Density and surface tension of ionic liquids. J Phys Chem B 114(51):17025–17036 Jan Leys CSPT, Glorieux C, Zahn S, Kirchner B, Longuemart S, Lethesh KC, Nockemann P, Dehaene W, Binnemanse K (2014) Electrical conductivity and glass formation in nitrile-functionalized pyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquids: chain length and odd–even effects of the alkyl spacer between the pyrrolidinium ring and the nitrile group. Phys Chem Chem Phys 16:10548–10557 Aihara J-I (1999) Reduced HOMO−LUMO gap as an index of kinetic stability for polycyclic aromatic hydrocarbons. J Phys Chem A 103(37):7487–7495 Ilawe NV et al (2016) Chemical and radiation stability of ionic liquids: a computational screening study. J Phys Chem C 120(49):27757–27767 Thomas E, Vijayalakshmi KP, George BK (2019) Kinetic stability of imidazolium cations and ionic liquids: a frontier molecular orbital approach. J Mol Liq 276:721–727 Saravanamurugan S, Kunov-Kruse AJ, Fehrmann R, Riisager A (2014) Amine-functionalized amino acid-based ionic liquids as efficient and high-capacity absorbents for CO(2). ChemSusChem 7(3):897–902 Shukla SK et al (2019) Ionic liquids: potential materials for carbon dioxide capture and utilization. Front Mater 6. https://doi.org/10.3389/fmats.2019.00042