Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Tương tác cation-anion, độ ổn định và phổ IR của các chất lỏng ion hai lần có nguồn gốc từ amino acid được nghiên cứu bằng lý thuyết chức năng mật độ
Tóm tắt
Trong công trình nghiên cứu này, chúng tôi đã nghiên cứu lý thuyết về các chất lỏng ion hai lần (DILs) được cấu thành từ dication methylimidazolium geminal với các anion amino acid và các cấu trúc cách điệu khác nhau sử dụng lý thuyết chức năng mật độ. DILs có nguồn gốc từ amino acid hình thành thông qua các liên kết hydro C-H···O mạnh. Những liên kết hydro này đóng một vai trò quan trọng trong việc ổn định DILs. Năng lượng tương tác cation-anion cao hơn theo thứ tự năng lượng liên kết cộng hóa trị và mật độ chất lỏng của các DILs ngụ ý rằng chúng có độ ổn định nhiệt cao hơn so với các dẫn xuất đơn. Tần số kéo dài C–H đều nằm trên 3100 cm−1 trong tất cả các phức hợp và tạo thành dấu hiệu đặc trưng cho DILs. Thú vị thay, các anion amino acid aliphatic và aromatic cho thấy các tính chất phân tử tương tự. Tổng thể, các DILs được cấu tạo từ amino acid thể hiện độ ổn định cao và độ căng bề mặt lớn và không độc hại về mặt hóa học; do đó, chúng có thể thay thế các DILs vô cơ.
Từ khóa
#ionic liquids #amino acids #dications #hydrogen bonding #density functional theoryTài liệu tham khảo
Kaczmarek DK, Czerniak K, Klejdysz T (2018) Dicationic ionic liquids as new feeding deterrents. Chem Pap 72(10):2457–2466
Silvester DS (2011) Recent advances in the use of ionic liquids for electrochemical sensing. Analyst 136(23):4871–4882
Plechkova NV, Seddon KR (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 37(1):123–150
Bardak C, Atac A, Bardak F (2019) Effect of the external electric field on the electronic structure, spectroscopic features, NLO properties, and interionic interactions in ionic liquids: a DFT approach. J Mol Liq 273:314–325
Rao SS, Gejji SP (2016) Electronic structure, NMR, spin–spin coupling, and noncovalent interactions in aromatic amino acid based ionic liquids. J Phys Chem A 120(28):5665–5684
Fumino K et al (2011) The influence of hydrogen bonding on the physical properties of ionic liquids. Phys Chem Chem Phys 13(31):14064–14075
Brennecke JF, Maginn EJ (2001) Ionic liquids: innovative fluids for chemical processing. AICHE J 47(11):2384–2389
Tokuda H et al (2005) Physicochemical properties and structures of room temperature ionic liquids. 2. Variation of alkyl chain length in imidazolium cation. J Phys Chem B 109(13):6103–6110
Lovelock KRJ et al (2009) Vaporisation of a dicationic ionic liquid. ChemPhysChem 10(2):337–340
Alavi SM, Yeganegi S (2019) Computational study of halogen-free Boron based dicationic ionic liquids of [bis-Mim][BMB]2 and [bis-Mim][BScB]2. Spectrochim Acta A Mol Biomol Spectrosc 210:181–192
Zafer C et al (2009) Dicationic bis-imidazolium molten salts for efficient dye sensitized solar cells: synthesis and photovoltaic properties. Electrochim Acta 54(24):5709–5714
Khan AS et al (2017) Dicationic imidazolium based ionic liquids: synthesis and properties. J Mol Liq 227:98–105
Chen J et al (2018) Dicationic ionic liquid: a novel method for improving the isomerization degree of n-pentane. Energy Fuel 32(4):5518–5526
Fang D, Yang J, Jiao C (2011) Dicationic ionic liquids as environmentally benign catalysts for biodiesel synthesis. ACS Catal 1(1):42–47
Anderson JL et al (2005) Structure and properties of high stability geminal dicationic ionic liquids. J Am Chem Soc 127(2):593–604
Kumar Sahu P, Ghosh A, Sarkar M (2015) Understanding structure–property correlation in monocationic and dicationic ionic liquids through combined fluorescence and pulsed-field gradient (PFG) and relaxation NMR experiments. J Phys Chem B 119(44):14221–14235
Yeganegi S, Soltanabadi A, Farmanzadeh D (2012) Molecular dynamic simulation of dicationic ionic liquids: effects of anions and alkyl chain length on liquid structure and diffusion. J Phys Chem B 116(37):11517–11526
Fumino K, Ludwig R (2014) Analyzing the interaction energies between cation and anion in ionic liquids: the subtle balance between coulomb forces and hydrogen bonding. J Mol Liq 192:94–102
Niemann T et al (2018) Spectroscopic evidence for an attractive cation–cation interaction in hydroxy-functionalized ionic liquids: a hydrogen-bonded chain-like trimer. Angew Chem Int Ed 57(47):15364–15368
Wu Y, Zhang T (2009) Structural and electronic properties of amino acid based ionic liquids: a theoretical study. J Phys Chem A 113(46):12995–13003
Kirchhecker S, Esposito D (2016) Amino acid based ionic liquids: a green and sustainable perspective. Curr Opin Green Sustain Chem 2:28–33
Fukumoto K, Yoshizawa M, Ohno H (2005) Room temperature ionic liquids from 20 natural amino acids. J Am Chem Soc 127(8):2398–2399
Fujiwara S et al (2018) Design of dication-type amino acid ionic liquids and their application to self-assembly media of amphiphiles. Bull Chem Soc Jpn 91(1):1–5
Huang SJ, Yin AW, Wu CB (2013) Synthesis of chiral geminal dicationic ionic liquid from amino acids. Asian J Chem 25(11):5405–5406
Kawadkar DV, Zodape SP (2019) Thermophysical properties of dicationic ionic liquids under the influence of amino acid. J Chem Eng Data 64(2):421–432
Haddad B et al (2019) Para-xylyl linked bis-imidazolium ionic liquids: a study of the conformers of the cation and of the anion-cation hydrogen bonding. J Mol Struct 1175:175–184
Shirota H et al (2011) Comparison between dicationic and monocationic ionic liquids: liquid density, thermal properties, surface tension, and shear viscosity. J Chem Eng Data 56(5):2453–2459
Hooshyari K, Javanbakht M, Adibi M (2016) Novel composite membranes based on PBI and dicationic ionic liquids for high temperature polymer electrolyte membrane fuel cells. Electrochim Acta 205:142–152
Ding Y-S et al (2007) Synthesis, characterization and properties of geminal imidazolium ionic liquids. Colloids Surf A Physicochem Eng Asp 298(3):201–205
Boumediene M et al (2019) Synthesis, thermal stability, vibrational spectra and conformational studies of novel dicationic meta-xylyl linked bis-1-methylimidazolium ionic liquids. J Mol Struct 1186:68–79
Chinnappan A et al (2017) Mn nanoparticles decorated on the ionic liquid functionalized multiwalled carbon nanotubes as a supercapacitor electrode material. Chem Eng J 316:928–935
Frisch MJ et al (2009) Gaussian 09. Gaussian, Inc., Wallingford
Grimme S et al (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132(15):154104
Stefan G (2004) Accurate description of van der Waals complexes by density functional theory including empirical corrections. J Comput Chem 25(12):1463–1473
Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592
te Velde G et al (2001) Chemistry with ADF. J Comput Chem 22(9):931–967
Sun H et al (2009) Geometrical and electronic structures of the dication and ion pair in the geminal dicationic ionic liquid 1,3-bis[3-methylimidazolium-yl]propane bromide. J Mol Struct THEOCHEM 900(1):37–43
Patil RA et al (2016) Synthesis of thermally stable geminal dicationic ionic liquids and related ionic compounds: an examination of physicochemical properties by structural modification. Chem Mater 28(12):4315–4323
Shyama M, Lakshmipathi S (2019) Structural Chemistry 30:185–194
Zaitsau DH et al (2016) Dispersion and hydrogen bonding rule: why the vaporization enthalpies of aprotic ionic liquids are significantly larger than those of protic ionic liquids. Angew Chem Int Ed 55(38):11682–11686
Jeon Y et al (2008) Structures of ionic liquids with different anions studied by infrared vibration spectroscopy. J Phys Chem B 112(15):4735–4740
Senthilkumar L et al (2013) Density functional theory investigation of cocaine water complexes. J Mol Model 19(8):3411–3425
Senthilkumar L, Ghanty TK, Ghosh SK (2005) Electron density and energy decomposition analysis in hydrogen-bonded complexes of azabenzenes with water, acetamide, and thioacetamide. J Phys Chem A 109(33):7575–7582
Karthika M, Senthilkumar L, Kanakaraju R (2014) Hydrogen-bond interactions in hydrated 6-selenoguanine tautomers: a theoretical study. Struct Chem 25(1):197–213
Senthilkumar L, Kolandaivel P (2006) Molecular interaction study of formohydroxamic acid (FHA) with water. J Mol Struct 791(1):149–157
Umadevi V, Senthilkumar L, Kolandaivel P (2013) Theoretical investigations on the hydrogen bonding of nitrile isomers with H2O, HF, NH3 and H2S. Mol Simul 39(11):908–921
Karthika M, Senthilkumar L, Kanakaraju R (2012) Theoretical studies on hydrogen bonding in caffeine–theophylline complexes. Comput Theor Chem 979:54–63
Koch U, Popelier PLA (1995) Characterization of C-H-O hydrogen bonds on the basis of the charge density. J Phys Chem 99(24):9747–9754
Rozas I, Alkorta I, Elguero J (2000) Behavior of ylides containing N, O, and C atoms as hydrogen bond acceptors. J Am Chem Soc 122(45):11154–11161
Lalitha M, Senthilkumar L (2014) DFT study on X−·(H2O)n=1-10 (X=OH, NO2, NO3, CO3) anionic water cluster. J Mol Graph Model 54:148–163
Senthilkumar L et al (2012) Hydrogen-bonded complexes of nicotine with simple alcohols. Int J Quantum Chem 112(16):2787–2793
Priya AM, Senthilkumar L, Kolandaivel P (2014) Hydrogen-bonded complexes of serotonin with methanol and ethanol: a DFT study. Struct Chem 25(1):139–157
Karthika M, Kanakaraju R, Senthilkumar L (2013) Spectroscopic investigations and hydrogen bond interactions of 8-aza analogues of xanthine, theophylline and caffeine: a theoretical study. J Mol Model 19(4):1835–1851
Zhang H et al (2019) Thermophysical properties of dicationic imidazolium-based ionic compounds for thermal storage. J Mol Liq 282:474–483
Dong K, Zhang S, Wang J (2016) Understanding the hydrogen bonds in ionic liquids and their roles in properties and reactions. Chem Commun 52(41):6744–6764
Zahn S et al (2014) Understanding ionic liquids from theoretical methods. J Mol Liq 192:71–76
Wulf A, Fumino K, Ludwig R (2010) Spectroscopic evidence for an enhanced anion–cation interaction from hydrogen bonding in pure imidazolium ionic liquids. Angew Chem Int Ed 49(2):449–453
Shahrom M, Wilfred CD (2014) Synthesis and thermal properties of amino acids ionic liquids (AAILS). J Appl Sci 14:1067–1072
Katsyuba SA et al (2007) Application of density functional theory and vibrational spectroscopy toward the rational design of ionic liquids. J Phys Chem A 111(2):352–370
Bodo E, Caminiti R (2010) The structure of geminal imidazolium bis(trifluoromethylsulfonyl)amide ionic liquids: a theoretical study of the gas phase ionic complexes. J Phys Chem A 114(47):12506–12512
Horinaka J, Urabayashi Y, Takigawa T (2018) Effects of side groups on entanglement network of cellulosic polysaccharides. Cellulose 22:2305–2310
Horinaka J-I, Yasuda R, Takigawa T (2011) Entanglement properties of cellulose and amylose in an ionic liquid. J Polym Sci B Polym Phys 49(13):961–965
Bhattacharjee A, Carvalho PJ, Coutinho JAP (2014) The effect of the cation aromaticity upon the thermophysical properties of piperidinium- and pyridinium-based ionic liquids. Fluid Phase Equilib 375:80–88
Urahata SM, Ribeiro MCC (2004) Structure of ionic liquids of 1-alkyl-3-methylimidazolium cations: a systematic computer simulation study. J Chem Phys 120(4):1855–1863
Lee JH et al (2019) Effect of temperature on separation performance in ionic liquid/Ag nanocomposite membranes for olefin/paraffin mixtures. J Ind Eng Chem 74:103–107
Bazbouz MB et al (2019) Dry-jet wet electrospinning of native cellulose microfibers with macroporous structures from ionic liquids. J Appl Polym Sci 136(10):47153
Bodo E, Migliorati V (2011) Theoretical Description of Ionic Liquids, Ionic Liquids - Classes and Properties, Prof. Scott Handy (Ed.),
Farmanzadeh D, Soltanabadi A, Yeganegi S (2013) DFT study of the geometrical and electronic structures of geminal dicationic ionic liquids 1,3-bis[3-methylimidazolium-1-yl]hexane halides. J Chin Chem Soc 60(5):551–558
Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab Initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98(45):11623–11627
Van Lenthe E, Baerends EJ (2003) Optimized slater-type basis sets for the elements 1–118. J Comput Chem 24:1142–1156
Ludwig R (2015) The effect of dispersion forces on the interaction energies and far infrared spectra of protic ionic liquids. Phys Chem Chem Phys 17(21):13790–13793
Izgorodina EI et al (2014) Importance of dispersion forces for prediction of thermodynamic and transport properties of some common ionic liquids. Phys Chem Chem Phys 16(16):7209–7221
Fukaya Y et al (2007) Bio ionic liquids: room temperature ionic liquids composed wholly of biomaterials. Green Chem 9(11):1155–1157
Kolbeck C et al (2010) Density and surface tension of ionic liquids. J Phys Chem B 114(51):17025–17036
Jan Leys CSPT, Glorieux C, Zahn S, Kirchner B, Longuemart S, Lethesh KC, Nockemann P, Dehaene W, Binnemanse K (2014) Electrical conductivity and glass formation in nitrile-functionalized pyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquids: chain length and odd–even effects of the alkyl spacer between the pyrrolidinium ring and the nitrile group. Phys Chem Chem Phys 16:10548–10557
Aihara J-I (1999) Reduced HOMO−LUMO gap as an index of kinetic stability for polycyclic aromatic hydrocarbons. J Phys Chem A 103(37):7487–7495
Ilawe NV et al (2016) Chemical and radiation stability of ionic liquids: a computational screening study. J Phys Chem C 120(49):27757–27767
Thomas E, Vijayalakshmi KP, George BK (2019) Kinetic stability of imidazolium cations and ionic liquids: a frontier molecular orbital approach. J Mol Liq 276:721–727
Saravanamurugan S, Kunov-Kruse AJ, Fehrmann R, Riisager A (2014) Amine-functionalized amino acid-based ionic liquids as efficient and high-capacity absorbents for CO(2). ChemSusChem 7(3):897–902
Shukla SK et al (2019) Ionic liquids: potential materials for carbon dioxide capture and utilization. Front Mater 6. https://doi.org/10.3389/fmats.2019.00042