Cathodic activation and inflammatory species are critical to simulating in vivo Ti-6Al-4V selective dissolution
Tài liệu tham khảo
Gilbert, 2017, 1.2 electrochemical behavior of metals in the biological milieu, Compr. Biomater. II, 1, 19
Gilbert, 2012, 1
Navarro, 2008, Biomaterials in orthopaedics, J. R. Soc. Interface, 5, 1137, 10.1098/rsif.2008.0151
Boyer, 1994
Cook, 1994, Corrosion and wear at the modular interface of uncemented femoral stems, J. Bone Jt. Surg. Br., 76, 68, 10.1302/0301-620X.76B1.8300685
Carlson, 2012, Femoral stem fracture and in vivo corrosion of retrieved modular femoral hips, J. Arthroplast., 27, 1389, 10.1016/j.arth.2011.11.007
Collier, 1992, Corrosion between the components of modular femoral hip prostheses, J. Bone. Jt. Surg. Br., 74, 511, 10.1302/0301-620X.74B4.1624507
Fraitzl, 2011, Corrosion at the stem-sleeve interface of a modular titanium alloy femoral component as a reason for impaired disengagement, J. Arthroplast., 26, 113, 10.1016/j.arth.2009.10.018
Kop, 2011, Proximal component modularity in THA—at what cost? An implant retrieval study, Clin. Orthop. Relat. Res., 470, 1885, 10.1007/s11999-011-2155-9
Urban, 2005, Corrosion of modular titanium alloy stems in cementless hip replacement, J. ASTM Int., 2, 1, 10.1520/JAI12810
Rodrigues, 2013, Titanium corrosion mechanisms in the oral environment: a retrieval study, Materials, 6, 5258, 10.3390/ma6115258
Goldberg, 2002, A multicenter retrieval study of the taper interfaces of modular hip prostheses, Clin. Orthop. Relat. Res., 401, 149, 10.1097/00003086-200208000-00018
Rodrigues, 2009, In vivo severe corrosion and hydrogen embrittlement of retrieved modular body titanium alloy hip-implants, J. Biomed. Mater. Res. Part B, 88, 206, 10.1002/jbm.b.31171
Gilbert, 2012, In vivo oxide-induced stress corrosion cracking of Ti-6Al-4V in a neck–stem modular taper: emergent behavior in a new mechanism of in vivo corrosion, J. Biomed. Mater. Res. Part B Appl. Biomater., 100, 584, 10.1002/jbm.b.31943
Jacobs, 2014, What do we know about taper corrosion in total hip arthroplasty?, J. Arthroplast., 29, 668, 10.1016/j.arth.2014.02.014
Gilbert, 1993, In vivo corrosion of modular hip prosthesis components in mixed and similar metal combinations. The effect of crevice, stress, motion, and alloy coupling, J. Biomed. Mater. Res., 27, 1533, 10.1002/jbm.820271210
Gilbert, 1997, 45
Mali, 2016, Mechanically assisted crevice corrosion in metallic biomaterials: a review, Mater. Technol., 31, 732, 10.1080/10667857.2016.1223909
Gilbert, 1998, The reduction half cell in biomaterials corrosion: oxygen diffusion profiles near and cell response to polarized titanium surfaces, J. Biomed. Mater. Res., 6, 321, 10.1002/(SICI)1097-4636(199811)42:2<321::AID-JBM18>3.0.CO;2-L
Swaminathan, 2013, Potential and frequency effects on fretting corrosion of Ti6Al4V and CoCrMo surfaces, J. Biomed. Mater. Res. Part A, 101, 2602, 10.1002/jbm.a.34564
Gilbert, 2007
Gilbert, 2011
Prestat, 2021, Microstructural aspects of Ti6Al4V degradation in H2O2-containing phosphate buffered saline, Corros. Sci., 190, 10.1016/j.corsci.2021.109640
Chandrasekaran, 2006, Titanium electrochemistry in the presence of the inflammatory species H2O2, 97
Rodrigues, 2009, In vivo severe corrosion and hydrogen embrittlement of retrieved modular body titanium alloy hip-implants, J. Biomed. Mater. Res. B Appl. Biomater., 88, 206, 10.1002/jbm.b.31171
Gilbert, 2016, Area-dependent impedance-based voltage shifts during tribocorrosion of Ti-6Al-4V biomaterials: theory and experiment, Surf. Topogr. Metrol. Prop., 4, 10.1088/2051-672X/4/3/034002
Gilbert, 2020, A metallic biomaterial tribocorrosion model linking fretting mechanics, currents, and potentials: model development and experimental comparison, J. Biomed. Mater. Res. B Appl. Biomater., 108, 3174, 10.1002/jbm.b.34643
Ehrensberger, 2010, The effect of static applied potential on the 24-hour impedance behavior of commercially pure titanium in simulated biological conditions, J. Biomed. Mater. Res. Part B, 93, 106, 10.1002/jbm.b.31564
Wiegand, 2019, A fluorescent approach for detecting and measuring reduction reaction byproducts near cathodically-biased metallic surfaces: Reactive oxygen species production and quantification, Bioelectrochemistry, 129, 235, 10.1016/j.bioelechem.2019.05.020
Bijukumar, 2020, In vitro evidence for cell-accelerated corrosion within modular junctions of total hip replacements, J. Orthop. Res., 38, 393, 10.1002/jor.24447
Hall, 2018, Mechanical, chemical and biological damage modes within head-neck tapers of CoCrMo and Ti6Al4V contemporary hip replacements, J. Biomed. Mater. Res. Part B Appl. Biomater., 106, 1672, 10.1002/jbm.b.33972
Lasdon, 1974, Nonlinear optimization using the generalized reduced gradient method, revue française d'automatique, informatique, recherche opérationnelle, Rech. Opérationnelle, 8, 73, 10.1051/ro/197408V300731
Gilbert, 2020, Analysis of electrochemical impedance spectra using phase angle symmetry across log frequency, J. Electrochem. Soc., 167, 10.1149/1945-7111/ab69f6
Yu, 2022, Temperature-dependence corrosion behavior of Ti6Al4V in the presence of HCl, Front. Mater., 9, 10.3389/fmats.2022.880702
Berbel, 2019, Determinants of corrosion resistance of Ti-6Al-4V alloy dental implants in an in vitro model of peri-implant inflammation, PLoS One, 14, 10.1371/journal.pone.0210530
Faverani, 2014, Corrosion kinetics and topography analysis of Ti–6Al–4V alloy subjected to different mouthwash solutions, Mater. Sci. Eng. C, 43, 1, 10.1016/j.msec.2014.06.033
Höhn, 2015, Effect of inflammatory conditions and H2O2 on bare and coated Ti–6Al–4V surfaces: corrosion behavior, metal ion release and Ca-P formation under long-term immersion in DMEM, Appl. Surf. Sci., 357, 101, 10.1016/j.apsusc.2015.08.261
Karthega, 2010, Hydrogen peroxide treatment on Ti–6Al–4V alloy: a promising surface modification technique for orthopaedic application, Appl. Surf. Sci., 256, 2176, 10.1016/j.apsusc.2009.09.069
Ravoiu, 2019, Influence of different concentration of hydrogen peroxide on the corrosion behavior of Ti-6Al-4V alloy immersed in physiological solution, IOP Conf. Ser. Mater. Sci. Eng., 572, 12006, 10.1088/1757-899X/572/1/012006
2019
Al-Mobarak, 2006, The effect of hydrogen peroxide on the electrochemical behavior of Ti and some of its alloys for dental applications, Mater. Chem. Phys., 99, 333, 10.1016/j.matchemphys.2005.10.032
Bearinger, 2003, Effect of hydrogen peroxide on titanium surfaces: in situ imaging and step-polarization impedance spectroscopy of commercially pure titanium and titanium, 6-aluminum, 4-vanadium, J. Biomed. Mater. Res. Part A, 67, 702, 10.1002/jbm.a.10116
Faverani, 2014, Corrosion kinetics and topography analysis of Ti–6Al–4V alloy subjected to different mouthwash solutions, Mater. Sci. Eng. C, 43, 1, 10.1016/j.msec.2014.06.033
Atapour, 2010, Corrosion behavior of Ti-6Al-4V with different thermomechanical treatments and microstructures, Corrosion, 66, 10.5006/1.3452400
Chen, 2020, Elucidating the corrosion-related degradation mechanisms of a Ti-6Al-4V dental implant, Dent. Mater., 36, 431, 10.1016/j.dental.2020.01.008
Yu, 2015, A synergistic effect of albumin and H2O2 accelerates corrosion of Ti6Al4V, Acta Biomater., 26, 355, 10.1016/j.actbio.2015.07.046
Ehrensberger, 2010, Titanium is not “the most biocompatible metal” under cathodic potential: the relationship between voltage and MC3T3 preosteoblast behavior on electrically polarized cpTi surfaces, J. Biomed. Mater. Res. Part A, 93, 1500, 10.1002/jbm.a.32622
Sivan, 2013, The effect of cathodic electrochemical potential of Ti-6Al-4V on cell viability: voltage threshold and time dependence, J. Biomed. Mater. Res. Part B Appl. Biomater., 101, 1489, 10.1002/jbm.b.32970
Gilbert, 2016, Oxidative stress, inflammation, and the corrosion of metallic biomaterials: corrosion causes biology and biology causes corrosion, 59
Halliwell, 2000, Hydrogen peroxide in the human body, FEBS Lett., 486, 10, 10.1016/S0014-5793(00)02197-9