Cathodic activation and inflammatory species are critical to simulating in vivo Ti-6Al-4V selective dissolution

Acta Biomaterialia - Tập 149 - Trang 399-409 - 2022
Michael A. Kurtz1,2, Piyush Khullar1,2, Jeremy L. Gilbert1,2
1Department of Bioengineering, Clemson University, Clemson, SC, United States
2The Clemson University-Medical University of South Carolina Bioengineering Program, 68 President Street, BE 325, Charleston, SC 29425, United States

Tài liệu tham khảo

Gilbert, 2017, 1.2 electrochemical behavior of metals in the biological milieu, Compr. Biomater. II, 1, 19 Gilbert, 2012, 1 Navarro, 2008, Biomaterials in orthopaedics, J. R. Soc. Interface, 5, 1137, 10.1098/rsif.2008.0151 Boyer, 1994 Cook, 1994, Corrosion and wear at the modular interface of uncemented femoral stems, J. Bone Jt. Surg. Br., 76, 68, 10.1302/0301-620X.76B1.8300685 Carlson, 2012, Femoral stem fracture and in vivo corrosion of retrieved modular femoral hips, J. Arthroplast., 27, 1389, 10.1016/j.arth.2011.11.007 Collier, 1992, Corrosion between the components of modular femoral hip prostheses, J. Bone. Jt. Surg. Br., 74, 511, 10.1302/0301-620X.74B4.1624507 Fraitzl, 2011, Corrosion at the stem-sleeve interface of a modular titanium alloy femoral component as a reason for impaired disengagement, J. Arthroplast., 26, 113, 10.1016/j.arth.2009.10.018 Kop, 2011, Proximal component modularity in THA—at what cost? An implant retrieval study, Clin. Orthop. Relat. Res., 470, 1885, 10.1007/s11999-011-2155-9 Urban, 2005, Corrosion of modular titanium alloy stems in cementless hip replacement, J. ASTM Int., 2, 1, 10.1520/JAI12810 Rodrigues, 2013, Titanium corrosion mechanisms in the oral environment: a retrieval study, Materials, 6, 5258, 10.3390/ma6115258 Goldberg, 2002, A multicenter retrieval study of the taper interfaces of modular hip prostheses, Clin. Orthop. Relat. Res., 401, 149, 10.1097/00003086-200208000-00018 Rodrigues, 2009, In vivo severe corrosion and hydrogen embrittlement of retrieved modular body titanium alloy hip-implants, J. Biomed. Mater. Res. Part B, 88, 206, 10.1002/jbm.b.31171 Gilbert, 2012, In vivo oxide-induced stress corrosion cracking of Ti-6Al-4V in a neck–stem modular taper: emergent behavior in a new mechanism of in vivo corrosion, J. Biomed. Mater. Res. Part B Appl. Biomater., 100, 584, 10.1002/jbm.b.31943 Jacobs, 2014, What do we know about taper corrosion in total hip arthroplasty?, J. Arthroplast., 29, 668, 10.1016/j.arth.2014.02.014 Gilbert, 1993, In vivo corrosion of modular hip prosthesis components in mixed and similar metal combinations. The effect of crevice, stress, motion, and alloy coupling, J. Biomed. Mater. Res., 27, 1533, 10.1002/jbm.820271210 Gilbert, 1997, 45 Mali, 2016, Mechanically assisted crevice corrosion in metallic biomaterials: a review, Mater. Technol., 31, 732, 10.1080/10667857.2016.1223909 Gilbert, 1998, The reduction half cell in biomaterials corrosion: oxygen diffusion profiles near and cell response to polarized titanium surfaces, J. Biomed. Mater. Res., 6, 321, 10.1002/(SICI)1097-4636(199811)42:2<321::AID-JBM18>3.0.CO;2-L Swaminathan, 2013, Potential and frequency effects on fretting corrosion of Ti6Al4V and CoCrMo surfaces, J. Biomed. Mater. Res. Part A, 101, 2602, 10.1002/jbm.a.34564 Gilbert, 2007 Gilbert, 2011 Prestat, 2021, Microstructural aspects of Ti6Al4V degradation in H2O2-containing phosphate buffered saline, Corros. Sci., 190, 10.1016/j.corsci.2021.109640 Chandrasekaran, 2006, Titanium electrochemistry in the presence of the inflammatory species H2O2, 97 Rodrigues, 2009, In vivo severe corrosion and hydrogen embrittlement of retrieved modular body titanium alloy hip-implants, J. Biomed. Mater. Res. B Appl. Biomater., 88, 206, 10.1002/jbm.b.31171 Gilbert, 2016, Area-dependent impedance-based voltage shifts during tribocorrosion of Ti-6Al-4V biomaterials: theory and experiment, Surf. Topogr. Metrol. Prop., 4, 10.1088/2051-672X/4/3/034002 Gilbert, 2020, A metallic biomaterial tribocorrosion model linking fretting mechanics, currents, and potentials: model development and experimental comparison, J. Biomed. Mater. Res. B Appl. Biomater., 108, 3174, 10.1002/jbm.b.34643 Ehrensberger, 2010, The effect of static applied potential on the 24-hour impedance behavior of commercially pure titanium in simulated biological conditions, J. Biomed. Mater. Res. Part B, 93, 106, 10.1002/jbm.b.31564 Wiegand, 2019, A fluorescent approach for detecting and measuring reduction reaction byproducts near cathodically-biased metallic surfaces: Reactive oxygen species production and quantification, Bioelectrochemistry, 129, 235, 10.1016/j.bioelechem.2019.05.020 Bijukumar, 2020, In vitro evidence for cell-accelerated corrosion within modular junctions of total hip replacements, J. Orthop. Res., 38, 393, 10.1002/jor.24447 Hall, 2018, Mechanical, chemical and biological damage modes within head-neck tapers of CoCrMo and Ti6Al4V contemporary hip replacements, J. Biomed. Mater. Res. Part B Appl. Biomater., 106, 1672, 10.1002/jbm.b.33972 Lasdon, 1974, Nonlinear optimization using the generalized reduced gradient method, revue française d'automatique, informatique, recherche opérationnelle, Rech. Opérationnelle, 8, 73, 10.1051/ro/197408V300731 Gilbert, 2020, Analysis of electrochemical impedance spectra using phase angle symmetry across log frequency, J. Electrochem. Soc., 167, 10.1149/1945-7111/ab69f6 Yu, 2022, Temperature-dependence corrosion behavior of Ti6Al4V in the presence of HCl, Front. Mater., 9, 10.3389/fmats.2022.880702 Berbel, 2019, Determinants of corrosion resistance of Ti-6Al-4V alloy dental implants in an in vitro model of peri-implant inflammation, PLoS One, 14, 10.1371/journal.pone.0210530 Faverani, 2014, Corrosion kinetics and topography analysis of Ti–6Al–4V alloy subjected to different mouthwash solutions, Mater. Sci. Eng. C, 43, 1, 10.1016/j.msec.2014.06.033 Höhn, 2015, Effect of inflammatory conditions and H2O2 on bare and coated Ti–6Al–4V surfaces: corrosion behavior, metal ion release and Ca-P formation under long-term immersion in DMEM, Appl. Surf. Sci., 357, 101, 10.1016/j.apsusc.2015.08.261 Karthega, 2010, Hydrogen peroxide treatment on Ti–6Al–4V alloy: a promising surface modification technique for orthopaedic application, Appl. Surf. Sci., 256, 2176, 10.1016/j.apsusc.2009.09.069 Ravoiu, 2019, Influence of different concentration of hydrogen peroxide on the corrosion behavior of Ti-6Al-4V alloy immersed in physiological solution, IOP Conf. Ser. Mater. Sci. Eng., 572, 12006, 10.1088/1757-899X/572/1/012006 2019 Al-Mobarak, 2006, The effect of hydrogen peroxide on the electrochemical behavior of Ti and some of its alloys for dental applications, Mater. Chem. Phys., 99, 333, 10.1016/j.matchemphys.2005.10.032 Bearinger, 2003, Effect of hydrogen peroxide on titanium surfaces: in situ imaging and step-polarization impedance spectroscopy of commercially pure titanium and titanium, 6-aluminum, 4-vanadium, J. Biomed. Mater. Res. Part A, 67, 702, 10.1002/jbm.a.10116 Faverani, 2014, Corrosion kinetics and topography analysis of Ti–6Al–4V alloy subjected to different mouthwash solutions, Mater. Sci. Eng. C, 43, 1, 10.1016/j.msec.2014.06.033 Atapour, 2010, Corrosion behavior of Ti-6Al-4V with different thermomechanical treatments and microstructures, Corrosion, 66, 10.5006/1.3452400 Chen, 2020, Elucidating the corrosion-related degradation mechanisms of a Ti-6Al-4V dental implant, Dent. Mater., 36, 431, 10.1016/j.dental.2020.01.008 Yu, 2015, A synergistic effect of albumin and H2O2 accelerates corrosion of Ti6Al4V, Acta Biomater., 26, 355, 10.1016/j.actbio.2015.07.046 Ehrensberger, 2010, Titanium is not “the most biocompatible metal” under cathodic potential: the relationship between voltage and MC3T3 preosteoblast behavior on electrically polarized cpTi surfaces, J. Biomed. Mater. Res. Part A, 93, 1500, 10.1002/jbm.a.32622 Sivan, 2013, The effect of cathodic electrochemical potential of Ti-6Al-4V on cell viability: voltage threshold and time dependence, J. Biomed. Mater. Res. Part B Appl. Biomater., 101, 1489, 10.1002/jbm.b.32970 Gilbert, 2016, Oxidative stress, inflammation, and the corrosion of metallic biomaterials: corrosion causes biology and biology causes corrosion, 59 Halliwell, 2000, Hydrogen peroxide in the human body, FEBS Lett., 486, 10, 10.1016/S0014-5793(00)02197-9