Cathelicidin LL-37: A new important molecule in the pathophysiology of systemic lupus erythematosus

Journal of Translational Autoimmunity - Tập 3 - Trang 100029 - 2020
Alejandro Moreno-Angarita1,2, Cristian C. Aragón2, Gabriel J. Tobón2
1Universidad Icesi, Medical School, Cali, Colombia
2GIRAT: Grupo de Investigación en Reumatología, Autoinmunidad y Medicina Traslacional, Fundación Valle Del Lili and Universidad Icesi, Cali, Colombia

Tài liệu tham khảo

Wang, 2004, APD: the antimicrobial peptide database, Nucleic Acids Res., 32, 590D, 10.1093/nar/gkh025 Larrick, 1995, Human CAP18: a novel antimicrobial lipopolysaccharide-binding protein, Infect. Immun., 63, 1291, 10.1128/IAI.63.4.1291-1297.1995 Bucki, 2006, Interaction of the gelsolin-derived antibacterial PBP 10 peptide with lipid bilayers and cell membranes, Antimicrob. Agents Chemother., 50, 2932, 10.1128/AAC.00134-06 Oren, 1999, Structure and organization of the human antimicrobial peptide LL-37 in phospholipid membranes: relevance to the molecular basis for its non-cell-selective activity, Biochem. J., 341, 501, 10.1042/bj3410501 Vandamme, 2012, A comprehensive summary of LL-37, the factoctum human cathelicidin peptide, Cell. Immunol., 280, 22, 10.1016/j.cellimm.2012.11.009 Dürr, 2006, LL-37, the only human member of the cathelicidin family of antimicrobial peptides, Biochim. Biophys. Acta Biomembr., 1758, 1408, 10.1016/j.bbamem.2006.03.030 Wang, 2008, Structures of human host defense cathelicidin LL-37 and its smallest antimicrobial peptide KR-12 in lipid micelles, J. Biol. Chem., 283, 32637, 10.1074/jbc.M805533200 Turner, 1998, Activities of LL-37, a cathelin-associated antimicrobial peptide of human neutrophils, Antimicrob. Agents Chemother., 42, 2206, 10.1128/AAC.42.9.2206 Yamasaki, 2006, Kallikrein-mediated proteolysis regulates the antimicrobial effects of cathelicidins in skin, FASEB J., 20, 2068, 10.1096/fj.06-6075com Kahlenberg, 2013, Little peptide, big effects: the role of LL-37 in inflammation and autoimmune disease, J. Immunol., 191, 4895, 10.4049/jimmunol.1302005 Sørensen, 2001, Human cathelicidin, hCAP-18, is processed to the antimicrobial peptide LL-37 by extracellular cleavage with proteinase 3, Blood, 97, 3951, 10.1182/blood.V97.12.3951 Liu, 2007, Cutting edge: vitamin D-mediated human antimicrobial activity against Mycobacterium tuberculosis is dependent on the induction of cathelicidin, J. Immunol., 179, 10.4049/jimmunol.179.4.2060 Park, 2011, Regulation of cathelicidin antimicrobial peptide expression by an endoplasmic reticulum (ER) stress signaling, vitamin D receptor-independent pathway, J. Biol. Chem., 286, 34121, 10.1074/jbc.M111.250431 Schauber, 2008, The vitamin D pathway: a new target for control of the skins immune response?, Exp. Dermatol., 17, 633, 10.1111/j.1600-0625.2008.00768.x Iimura, 2005, Cathelicidin mediates innate intestinal defense against colonization with epithelial adherent bacterial pathogens, J. Immunol., 174, 4901, 10.4049/jimmunol.174.8.4901 Majewski, 2018, Serum concentrations of antimicrobial peptide cathelicidin LL-37 in patients with bacterial lung infections, Cent. Eur. J. Immunol., 43, 453, 10.5114/ceji.2018.81355 Tjabringa, 2006, Human cathelicidin LL-37 is a chemoattractant for eosinophils and neutrophils that acts via formyl-peptide receptors, Int. Arch. Allergy Immunol., 140, 103, 10.1159/000092305 van Harten, 2018, Cathelicidins: immunomodulatory antimicrobials, Vaccines, 6, 63, 10.3390/vaccines6030063 Tokumaru, 2005, Induction of keratinocyte migration via transactivation of the epidermal growth factor receptor by the antimicrobial peptide LL-37, J. Immunol., 175, 4662, 10.4049/jimmunol.175.7.4662 Zhang, 2010, Dual functions of the human antimicrobial peptide LL-37—target membrane perturbation and host cell cargo delivery, Biochim. Biophys. Acta Biomembr., 1798, 2201, 10.1016/j.bbamem.2009.12.011 Chamilos, 2012, Cytosolic sensing of extracellular self-DNA transported into monocytes by the antimicrobial peptide LL37, Blood, 120, 3699, 10.1182/blood-2012-01-401364 Lai, 2011, LL37 and cationic peptides enhance TLR3 signaling by viral double-stranded RNAs, PLoS One, 6, 10.1371/journal.pone.0026632 Yasin, 2000, Evaluation of the inactivation of infectious Herpes simplex virus by host-defense peptides, Eur. J. Clin. Microbiol. Infect. Dis., 19, 187, 10.1007/s100960050457 den HERTOG, 2005, Candidacidal effects of two antimicrobial peptides: histatin 5 causes small membrane defects, but LL-37 causes massive disruption of the cell membrane, Biochem. J., 388, 689, 10.1042/BJ20042099 van der Does, 2010, LL-37 directs macrophage differentiation toward macrophages with a proinflammatory signature, J. Immunol., 185, 1442, 10.4049/jimmunol.1000376 Chen, 2013, Human antimicrobial peptide LL-37 modulates proinflammatory responses induced by cytokine milieus and double-stranded RNA in human keratinocytes, Biochem. Biophys. Res. Commun., 433, 532, 10.1016/j.bbrc.2013.03.024 Scott, 2002, The human antimicrobial peptide LL-37 is a multifunctional modulator of innate immune responses, J. Immunol., 169, 3883, 10.4049/jimmunol.169.7.3883 Takahashi, 2018, Cathelicidin promotes inflammation by enabling binding of self-RNA to cell surface scavenger receptors, Sci. Rep., 8, 1 Otte, 2009, Effects of the cathelicidin LL-37 on intestinal epithelial barrier integrity, Regul. Pept., 156, 104, 10.1016/j.regpep.2009.03.009 Yu, 2007, Host defense peptide LL-37, in synergy with inflammatory mediator IL-1beta, augments immune responses by multiple pathways, J. Immunol., 179, 7684, 10.4049/jimmunol.179.11.7684 Barlow, 2006, The human cationic host defense peptide LL-37 mediates contrasting effects on apoptotic pathways in different primary cells of the innate immune system, J. Leukoc. Biol., 80, 509, 10.1189/jlb.1005560 Rosenfeld, 2006, Endotoxin (lipopolysaccharide) neutralization by innate immunity host-defense peptides, J. Biol. Chem., 281, 1636, 10.1074/jbc.M504327200 Brown, 2011, Host defense peptide LL-37 selectively reduces proinflammatory macrophage responses, J. Immunol., 186, 5497, 10.4049/jimmunol.1002508 Di Nardo, 2007, Cathelicidin antimicrobial peptides block dendritic cell TLR4 activation and allergic contact sensitization, J. Immunol., 178, 1829, 10.4049/jimmunol.178.3.1829 Tsokos, 2011, Systemic lupus erythematosus, N. Engl. J. Med., 365, 2110, 10.1056/NEJMra1100359 Panda, 2017, Plasmacytoid dendritic cells in autoimmunity, Curr. Opin. Immunol., 44, 20, 10.1016/j.coi.2016.10.006 Obermoser Bosch, 2011, Clinical implications of basic research Systemic Lupus Erythematosus and the Neutrophil, N. Engl. J. Med., 365, 758, 10.1056/NEJMcibr1107085 Zawrotniak, 2013, Neutrophil extracellular traps (NETs) - formation and implications, Acta Biochim. Pol., 60, 277, 10.18388/abp.2013_1983 Yu, 2013, Neutrophil extracellular traps and systemic lupus erythematosus, J. Clin. Cell. Immunol., 10.4172/2155-9899.1000139 Chamilos, 2011, Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus, Sci. Transl. Med., 3 Leffler, 2012, Neutrophil extracellular traps that are not degraded in systemic lupus erythematosus activate complement exacerbating the disease, J. Immunol., 188, 3522, 10.4049/jimmunol.1102404 Lande, 2007, Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide, Nature, 449, 564, 10.1038/nature06116 Villanueva, 2011, Netting neutrophils induce endothelial damage, infiltrate tissues, and expose immunostimulatory molecules in systemic lupus erythematosus, J. Immunol., 187, 538, 10.4049/jimmunol.1100450 Garcia-Romo, 2011, Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus, Sci. Transl. Med., 3, 10.1126/scitranslmed.3001201 Kienhöfer, 2014, No evidence of pathogenic involvement of cathelicidins in patient cohorts and mouse models of lupus and arthritis, PLoS One, 9, 10.1371/journal.pone.0115474 Roshandel, 2017, Cathelicidin (LL-37) and its correlation with pro-oxidant, antioxidant balance and disease activity in systemic lupus erythematosus: a cross-sectional human study, Lupus, 26, 975, 10.1177/0961203317691368 Kreuter, 2011, Expression of antimicrobial peptides in different subtypes of cutaneous lupus erythematosus, J. Am. Acad. Dermatol., 65, 125, 10.1016/j.jaad.2010.12.012 Sun, 2011, LL-37 expression in the skin in systemic lupus erythematosus, Lupus, 20, 904, 10.1177/0961203311398515 Reinholz, 2012, Cathelicidin LL-37: an antimicrobial peptide with a role in inflammatory skin disease, Ann. Dermatol., 24, 126, 10.5021/ad.2012.24.2.126 Paulsen, 2002, Antimicrobial peptides are expressed and produced in healthy and inflamed human synovial membranes, J. Pathol., 198, 369, 10.1002/path.1224 Säll, 2013, The antimicrobial peptide LL-37 alters human osteoblast Ca 2+ handling and induces Ca 2+ -independent apoptosis, J Innate Immun, 5, 290 Kilsgård, 2012, Peptidylarginine deiminases present in the airways during tobacco smoking and inflammation can citrullinate the host defense peptide LL-37, resulting in altered activities, Am. J. Respir. Cell Mol. Biol., 46, 240, 10.1165/rcmb.2010-0500OC Davidson, 2004, The cationic antimicrobial peptide LL-37 modulates dendritic cell differentiation and dendritic cell-induced T cell polarization, J. Immunol., 172, 10.4049/jimmunol.172.2.1146 Sandgren, 2004, The human antimicrobial peptide LL-37 transfers extracellular DNA plasmid to the nuclear compartment of mammalian cells via lipid rafts and proteoglycan-dependent endocytosis, J. Biol. Chem., 279, 17951, 10.1074/jbc.M311440200 Ganguly, 2009, Self-RNA–antimicrobial peptide complexes activate human dendritic cells through TLR7 and TLR8, J. Exp. Med., 206, 1983, 10.1084/jem.20090480