Categorified Quantum sl(2) and Equivariant Cohomology of Iterated Flag Varieties

Algebras and Representation Theory - Tập 14 Số 2 - Trang 253-282 - 2011
Aaron D. Lauda1
1Department of Mathematics, Columbia University, New York, NY 10027, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bernstein, J., Frenkel, I., Khovanov, M.: A categorification of the temperley-lieb algebra and schur quotients of $u(\mathfrak{sl}_2)$ via projective and zuckerman functors. Selecta Math. (N.S.) 5(2), 199–241 (1999). math.QA/0002087

Beĭlinson, A.A., Lusztig, G., MacPherson, R.: A geometric setting for the quantum deformation of ${\rm GL}\sb n$ . Duke Math. J. 61(2), 655–677 (1990)

Borel, A.: Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts. Ann. Math. (2) 57, 115–207 (1953)

Borceux, F.: Handbook of categorical algebra, 1. In: Encyclopedia of Mathematics and its Applications, vol. 50. Cambridge University Press, Cambridge (1994)

Crane, L., Frenkel, I.B.: Four-dimensional topological quantum field theory, Hopf categories, and the canonical bases. J. Math. Phys. 35(10), 5136–5154 (1994). Topology and Physics, hep-th/9405183

Chuang, J., Rouquier, R.: Derived equivalences for symmetric groups and $\mathfrak{sl}\sb 2$ -categorification. Ann. Math. (2) 167(1), 245–298 (2008). math.RT/0407205

Frenkel, I., Khovanov, M., Stroppel, C.: A categorification of finite-dimensional irreducible representations of quantum sl(2) and their tensor products. Selecta Math. (N.S.) 12(3–4), 379–431 (2006). math.QA/0511467

Fulton, W.: Young tableaux. In: London Mathematical Society Student Texts. With applications to representation theory and geometry, vol. 35. Cambridge University Press, Cambridge (1997)

Fulton, W.: Equivariant Cohomology in Algebraic Geometry. Eilenberg lectures, Columbia University, Spring 2007. Notes by Dave Anserson (2007). http://www.math.lsa.umich.edu/~dandersn/eilenberg/

Ginzburg, V.: Lagrangian construction of the enveloping algebra U(sl n). C. R. Acad. Sci. Paris Sér. I Math. 312(12), 907–912 (1991)

Hiller, H.: Geometry of Coxeter groups. In: Research Notes in Mathematics, vol. 54. Pitman (Advanced Publishing Program), Boston (1982)

Khovanov, M.: Nilcoxeter algebras categorify the Weyl algebra. Commun. Algebra 29(11), 5033–5052 (2001). math.RT/9906166

Kostant, B., Kumar, S.: The nil Hecke ring and cohomology of G/P for a Kac-Moody group G. Adv. Math. 62(3), 187–237 (1986)

Khovanov, M., Lauda, A.: A diagrammatic approach to categorification of quantum groups II. Trans. Am. Math. Soc. math.QA/0804.2080 . (2009)

Khovanov, M., Lauda, A.: A diagrammatic approach to categorification of quantum groups III. math.QA/0807.3250 (2008)

Khovanov, M., Lauda, A.: A diagrammatic approach to categorification of quantum groups I. Representat. Theory 13, 309–347 (2009). math.QA/0803.4121

Khovanov, M., Rozansky, L.: Matrix factorizations and link homology. Fundam. Math. 199(1), 1–91 (2008). math.QA/0401268

Kumar, S.: Kac-Moody groups, their flag varieties and representation theory. In: Progress in Mathematics, vol. 204. Birkhäuser Boston, Boston (2002)

Lauda, A.D.: Frobenius algebras and ambidextrous adjunctions. Theory Appl. Categ. 16, 84–122 (2006). math.CT/0502550

Lauda, A.D.: A categorification of quantum sl(2). math.QA/0803.3652 (2008)

Lusztig, G.: Introduction to quantum groups. In: Progress in Mathematics, vol. 110. Birkhäuser Boston, Boston (1993)

Mazorchuk, V., Stroppel, C.: A combinatorial approach to functorial quantum sl(k) knot invariants. Am. J. Math. 131 (2009). math.QA/0709.1971

Mackaay, M., Stošić, M., Vaz, P.: $\mathfrak{sl}(N)$ -link homology (N ≥ 4) using foams and the Kapustin-Li formula. Geom. Topol. 13(2), 1075–1128 (2009). math.GT/0708.2228

Rouquier, R.: 2-Kac-Moody algebras. arXiv:0812.5023 (2008)

Soergel, W.: The combinatorics of Harish-Chandra bimodules. J. Reine Angew. Math. 429, 49–74 (1992)

Stroppel, C.: A structure theorem for Harish-Chandra bimodules via coinvariants and Golod rings. J. Algebra 282(1), 349–367 (2004)

Tymoczko, J.S.: An introduction to equivariant cohomology and homology, following Goresky, Kottwitz, and MacPherson. In: Snowbird Lectures in Algebraic Geometry Contemp. Math., vol. 388, pp. 169–188. American Mathematical Society, Providence (2005)