Categorical frameworks for generalized functions
Tóm tắt
Từ khóa
Tài liệu tham khảo
Albeverio S., Gielerak R., Russo F.: A two-space dimensional semilinear heat equation perturbed by (Gaussian) white noise. Probab. Theory Relat. Fields 121(3), 319–366 (2001)
Adamek, J., Herrlich, H., Strecker, G.E.: Abstract and Concrete Categories: The Joy of Cats. Wiley, New York (1990)
Aragona J., Juriaans S.O., Oliveira O.R.B., Scarpalézos D.: Algebraic and geometric theory of the topological ring of Colombeau generalized functions. Proc. Edinb. Math. Soc. (2) 51(3), 545–564 (2008)
Baez J.C., Hoffnung A.E.: Convenient categories of smooth spaces. Trans. Am. Math. Soc. 363(11), 5789–5825 (2011)
Batubenge, A., Iglesias-Zemmour, P., Karshon, Y., Watts, J.: Diffeological, Frölicher, and differential spaces (preprint). http://www.math.uiuc.edu/~jawatts/papers/reflexive
Boman J.: Differentiability of a function and of its compositions with functions of one variable. Math. Scand. 20, 249–268 (1967)
Burtscher A., Kunzinger M.: Algebras of generalized functions with smooth parameter dependence. Proc. Edinb. Math. Soc., (2) 55(1), 105–124 (2012)
Christensen J.D., Sinnamon G., Wu E.: The D-topology for diffeological spaces. Pac. J. Math. 272(1), 87–110 (2014)
Christensen, J.D., Wu, E.: Tangent spaces and tangent bundles for diffeological spaces (prepreint). http://arxiv.org/abs/1411.5425
Colombeau, J.F.: New Generalized Functions and Multiplication of Distributions. Notas de Matemática, vol. 90. North-Holland, Amsterdam (1984)
Colombeau, J.F.: Elementary Introduction to New Generalized Functions. North-Holland Mathematics Studies, vol. 113. North-Holland, Amsterdam (1985)
Colombeau, J.F.: Multiplication of Distributions: A Tool in Mathematics, Numerical Engineering and Theoretical Physics. Lecture Notes in Mathematics, vol. 1532. Springer, Berlin (1992)
Frölicher, A., Kriegl, A.: Linear Spaces and Differentiation Theory. Wiley, Chichester (1988)
Garetto, C.: Topological structures in Colombeau algebras: topological $${{\widetilde{\mathbb{C} }}}$$ C ~ -modules and duality theory. Acta Appl. Math. 88(1), 81–123 (2005)
Garetto, C.: Topological structures in Colombeau algebras: investigation of the duals of $${{{\mathcal{G}}_c(\Omega),{\mathcal{G}}(\Omega)}}$$ G c ( Ω ) , G ( Ω ) and $${{{\mathcal{G}}_{\mathcal{S}}(\mathbb{R}^n)}}$$ G S ( R n ) . Monatsh. Math. 146(3), 203–226 (2005)
Giordano, P.: Fermat reals: nilpotent infinitesimals and infinite dimensional spaces (preprint). http://arxiv.org/abs/0907.1872
Giordano P.: Infinite dimensional spaces and Cartesian closedness. Zh. Mat. Fiz. Anal. Geom. 7(3), 225–284 (2011)
Giordano, P., Kunzinger, M.: Generalized functions as a category of smooth set-theoretical maps. http://www.mat.univie.ac.at/~giordap7/GenFunMaps
Giordano P., Kunzinger M.: New topologies on Colombeau generalized numbers and the Fermat–Reyes theorem. J. Math. Anal. Appl. 399(1), 229–238 (2013)
Giordano P., Kunzinger M.: Topological and algebraic structures on the ring of Fermat reals. Isr. J. Math. 193(1), 459–505 (2013)
Grosser, M., Kunzinger, M., Oberguggenberger, M., Steinbauer, R.: Geometric Theory of Generalized Functions with Applications to General Relativity. Mathematics and Its Applications, vol. 537. Kluwer, Dordrecht (2001)
Hörmander, L.: The Analysis of Linear Partial Differential Operators, I: Distribution Theory and Fourier Analysis. Grundlehren der Mathematischen Wissenschaften, vol. 256. Springer, Berlin (1983)
Iglesias-Zemmour, P.: Diffeology. Mathematical Surveys and Monographs, vol. 185. American Mathematical Society, Providence (2013)
Kelley, J.L., Namioka, I.: Linear Topological Spaces. Graduate Texts in Mathematics, vol. 36. Springer, New York (1976)
Kock A., Reyes G.: Distributions and heat equation in SDG. Cah. Topol. Géom. Différ. Catég. 47(1), 2–28 (2006)
Kriegl, A., Michor, P.W.: The Convenient Setting of Global Analysis. Mathematical Surveys and Monographs, vol. 53. American Mathematical Society, Providence (1997)
Laubinger, M.: Differential geometry in Cartesian closed categories of smooth spaces. Ph.D. thesis, Louisiana State University. http://etd.lsu.edu/docs/available/etd-02212008-165645/
nLab. Topological notions of Frölicher spaces. See http://ncatlab.org/nlab/show/topological+notions+of+Fr%C3%B6licher+spaces
Oberguggenberger, M.: Multiplication of Distributions and Applications to Partial Differential Equations. Pitman Research Notes in Mathematics Series, vol. 259. Longman, Harlow (1992)
Oberguggenberger M.: Generalized functions in nonlinear models—a survey. Nonlinear Anal. 47(8), 5029–5040 (2001)
Oberguggenberger, M., Russo, F.: Singular limiting behavior in nonlinear stochastic wave equations. In: Stochastic Analysis and Mathematical Physics. Progress in Probability, vol. 50, pp. 87–99. Birkhäuser, Boston (2001)
Schwartz, L.: Théorie des distributions, Tome I & II. Actualités Sci. Ind., vol. 1091/1122. Hermann & Cie, Paris (1950/1951)
Schwartz L.: Sur l’impossibilité de la multiplication des distributions. C. R. Acad. Sci. Paris 239, 847–848 (1954)
Stacey A.: Comparative smootheology. Theory Appl. Categ. 25(4), 64–117 (2011)
Steinbauer R., Vickers J.A.: On the Geroch–Traschen class of metrics. Class. Quantum Gravity 26(6), 1–19 (2009)
Shimakawa, K., Yoshida, K., Haraguchi, T.: Homology and cohomology via enriched bifunctors (preprint). http://arxiv.org/abs/1010.3336
Wu, E.: A homotopy theory for diffeological spaces. Ph.D. thesis, Western University (2012)
Wu, E.: Homological algebra for diffeological vector spaces. Homol. Homotopy Appl. (prepreint). http://arxiv.org/abs/1406.6717