Categorical data visualization and clustering using subjective factors

Data and Knowledge Engineering - Tập 53 Số 3 - Trang 243-262 - 2005
Chia‐Hui Chang1, Zhi-Kai Ding1
1Department of Computer Science and Information Engineering, National Central University, No. 300, Jhungda Road, Jhungli City, Taoyuan 320, Taiwan#TAB#

Tóm tắt

Từ khóa


Tài liệu tham khảo

C.L. Blake, C.J. Merz, UCI repository of machine learning databases, <http://www.cs.uci.edu/~mlearn/MLRepository.html>, Department of Information and Computer Science, University of California, Irvine, CA, 1998

P. Cheeseman, J. Stutz, Bayesian classification (autoclass): theory and results, in: Proceedings of Advances in Knowledge Discovery and Data Mining, 1996, pp. 153–180

D. Fisher, Improving inference through conceptual clustering, in: Proceedings of AAAI-87 Sixth National Conference on Artificial Intelligence, 1987, pp. 461–465

M. Friendly. Visualizing categorical data: data, stories, and pictures, in: SAS Users Group International, 25th Annual Conference, 2002

V. Ganti, J. Gehrke, R. Ramakrishnan, Cactus—clustering categorical data using summaries, in: Proceedings of the fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 1999, pp. 73–83

Gibson, 1998, Clustering categorical data: an approach based on dynamical systems, VLDB Journal, 8, 222, 10.1007/s007780050005

Guha, 2000, Rock: a robust clustering algorithm for categorical attributes, Information Systems, 25, 345, 10.1016/S0306-4379(00)00022-3

E.-H. Han, G. Karypis, V. Kumar, B. Mobasher, Clustering based on association rule hypergraphs, in: Workshop on Research Issues in Data Mining and Knowledge Discovery (DMKD), 1997, pp. 343–348

Huang, 1998, Extensions to the k-means algorithm for clustering large data sets with categorical values, Data Mining and Knowledge Discovery, 2, 283, 10.1023/A:1009769707641

Kohonen, 1995

T. Kohonen, S. Kaski, K. Lagus, T. Honkela, Very large two-level SOM for the browsing of newsgroups, in: Proceedings of International Conference on Artificial Neural Networks (ICANN), 1996, pp. 269–274

Konig, 2000, Interactive visualization and analysis of hierarchical neural projections for data mining, IEEE Transactions on Neural Networks, 11, 615, 10.1109/72.846733

W.A. Kosters, E. Marchiori, A.A.J. Oerlemans, Mining clusters with association rules, in: Proceedings of Advances in Intelligent Data Analysis, 1999, pp. 39–50

S. Ma, J.L. Hellstein, Ordering categorical data to improve visualization, in: IEEE Symposium on Information Visualization, 1999

J.B. MacQueen, Some methods for classification and analysis of multivariate observations, in: Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297, 1967

Mahalanobis, 1936, Proceedings of the National Institute of Science of India, 2

Mitchell, 1997

van Rijsbergen, 1979

E. Sirin, F. Yaman, Visualizing dynamic hierarchies in treemaps. <http://www.cs.umd.edu/class/spring2002/cmsc838f/Project/DynamicTreemap.pdf>, 2002

To, 1974

A.K.H. Tung, J. Hou, J. Han, Spatial clustering in the presence of obstacles, in: Proceedings of 2001 International Conference on Data Engineering, 2001, pp. 359–367

K. Wang, C. Xu, B. Liu, Clustering transactions using large items, in: Proceedings of the ACM CIKM International Conference on Information and Knowledge Management, 1999, pp. 483–490

Y. Zhang, A. Fu, C.H. Cai, P. Heng, Clustering categorical data, in: Proceedings of 16th IEEE International Conference on Data Engineering, 2000, p. 305