Catalytic effect of submicron TiO2 particles on the methane–air flames speed

Springer Science and Business Media LLC - Tập 52 - Trang 155-166 - 2016
T. A. Bolshova1, O. P. Korobeinichev1, K. V. Toropetskii2, A. G. Shmakov1,3, A. A. Chernov1
1Voevodsky Institute of Chemical Kinetics and Combustion, Novosibirsk, Russia
2Siberian State University of Geosystems and Technology, Novosibirsk, Russia
3Novosibirsk State University, Novosibirsk, Russia

Tóm tắt

A PIV study of a conical premixed methane–air Bunsen flame has shown that the inside of the cone has a complex gas-dynamic structure. In this system, the velocity of the gas flow entering the flame front varies in different parts of the flame cone and the stream tubes are not straight. The Landau–Markstein effect is discussed in the interpretation of the experimental data. A method of processing PIV measurement results is proposed that improves the accuracy of determining the burning velocity and allows a quantitative determination of the catalytic effect of submicron TiO2 particles, which is proportional to the particle surface area. The relative increase in the burning velocity is 2% per each ≈0.01 cm2/cm3 (particle surface/gas volume) of the total specific surface area of the particles. The experimental data are well described by modeling using well-known literature data on the detailed mechanism of chemical reactions and the mechanism of catalytic oxidation of methane with oxygen on metal oxides.

Tài liệu tham khảo

E. A. Mamedov, V. V. Popovskii, and G. K. Boreskov, “Reaction Mechanism of Catalytic Oxidation of Hydrogen on Oxides of Period IV Transition Metal,” Kinet. Katal. 11 (4), 969–988 (1970). M. E. Coltrin, R. J. Kee, and F. M. Rupley, “Surface Chemkin: A General Formalism and Software for Analyzing Heterogeneous Chemical Kinetics at a Gas-Surface Interface,” Int. J. Chem. Kinet. 23 (12), 1111–1128 (1991). E. A. Mamedov, V. V. Popovskii, and G. K. Boreskov, “Mechanism of Catalytic Oxidation of Hydrogen on Iron Oxide,” Kinet. Katal. 10 (4), 852–862 (1969). O. P. Korobeinichev, A. G. Shmakov, A. A. Chernov, D. M. Markovich, V. M. Dulin, and D. K. Sharaborin, “Spatial and Temporal Resolution of the Particle Image Velocimetry Technique in Flame Speed Measurements,” Fiz. Goreniya Vzryva 50 (5), 13–21 (2014) [Combust., Expl., Shock Waves 50 (5), 510–517 (2014)]. A. M. Efstathiou, D. Boudouvas, N. Vamvouka, and X. E. Verykios, “Kinetics of Methane Oxidative Coupling on Li-Doped TiO2,” J. Catalysis 140, (1), 1–15 (1993). Rika Tri Yunarti, Maro Lee, Yoon Jeong Hwang, Jae-Wook Choi, Dong Jin Suh, Jinwon Lee, Il Won Kim, and Jeong-Myeong Ha, “Transition Metal-Doped TiO2 Nanowire Catalysts for the Oxidative Coupling of Methane,” Catal. Commun. 50, 54–58 (2014). A. V. Fedorov and D. A. Tropin, “Determination of the Critical Size of a Particle Cloud Necessary for Suppression of Gas Detonation,” Fiz. Goreniya Vzryva 47 (4), 100–108 (2011) [Combust., Expl., Shock Waves 47 (4), 464–472 (2011)]. P. A. Fomin and J.-R. Chen, “Effect of Chemically Inert Particles on the Parameters and the Suppression of Detonation in Gases Effect of Chemically Inert Particles on Parameters and Suppression of Detonation in Gases,” Fiz. Goreniya Vzryva 45 (3), 77–88 (2009) [Combust., Expl., Shock Waves 45 (3), 303–313 (2009)]. N. A. Kakutkina, A. A. Korzhavin, and M. Mbarawa, “Filtration Combustion of Hydrogen–Air, Propane–Air, and Methane–Air Mixtures in Inert Porous Media,” Fiz. Goreniya Vzryva 42, (4), 8–20 (2006) [Combust., Expl., Shock Waves 42, (4), 372–383 (2006)]. J. H. Tien and R. J. Stalker, “Release of Chemical Energy by Combustion in a Supersonic Mixing of Layer of Hydrogen and Air,” Combust. Flame 131 (3), 329–348 (2002). A. A. Borisov, B. E. Gel’fand, S. A. Gubin, and S. M. Kogarko, “Effect of Inert Solid Particles on Detonation of a Combustible Gas Mixture,” Fiz. Goreniya Vzryva 11 (6), 909–914 (1975) [Combust., Expl., Shock Waves 11 (6), 774–778 (1975)]. M. P. Tokarev, D. M. Markovich, A. V. Bilsky, “Adaptive Algorithms for PIV Image Processing,” J. Comput. Technol. 12 (3), 109–131 (2007). L. D. Landau, “Slow Combustion Theory,” Zh. Eksp. Teor. Fiz. 14 (6), 240–244 (1944). G. H. Markstein “Experimental and Theoretical Studies of Flame-Front Stability,” J. Aeronaut. Sci. 18 (3), 199–209 (1951). R. M. Fristrom and A. A. Westenberg, Flame Structure, (McGraw-Hill, 1965). C. K. Law and C. J. Sung, “Structure, Aerodynamics, and Geometry of Premixed Flamelets,” Prog. Energy Combust. Sci. 26 (4-6), 459–505 (2000). A. P. Kelley and C. K. Law, “Nonlinear Effects in the Extraction of Laminar Flame Speeds from Expanding Spherical Flames,” Combust. Flame 156 (9), 1844–1851 (2009). B. Lewis and G. Elbe, “Stability and Structure of Burner Flames,” J. Chem. Phys. 11 (2), 75–97 (1943). R. M. Fristrom, “Definition of Burning and a Geometric Interpretation of the Effects of Flame Curvature,” Phys. Fluids 8 (2), 273–280 (1965). M. Frenklach, H. Wang, M. Goldenberg, G. P. Smith, D. M. Golden, C. T. Bowman, R. K. Hanson, W. C. Gardiner, and V. Lissianski, “GRI-Mech Combustion Model,” GRI Tech. Report No. GRI-95/0058; http://www.me.berkeley.edu/gri mech/. A. N. Mazas, B. Fiorina, D. A. Lacoste, and T. Schuller, “Effects of Water Vapor Addition on the Laminar Burning Velocity of Oxygen-Enriched Methane Flames,” Combust. Flame 158, (12), 2428–2440 (2011). Ya. B. Zel’dovich, “Chain Reactions in Hot Flames: Approximate Theory of Flame Velocity,” Kinet. Katal. 11 (3), 305–318 (1961). V. I. Smirnov, Course of Higher Mathematics. Vol. II: Differential Geometry (Gos. Izd. Tekh.-Teor. Lit., Moscow, 1956) [in Russian]. X. J. Gu, M. Z. Haq, M. Lewes, and R. Woolly, “Laminar Burning Velocity and Markstein Lengths of Methane–Air Mixtures,” Combust. Flame 121, (1-2), 41–58 (2000). D. Bradley, P. H. Gaskell, and X. J. Gu, “Burning Velocities, Markstein Lengths, and Flame Quenching for Spherical Methane–Air Flames: A Computational Study,” Combust. Flame 104 (1-2), 176–198 (1996). T. Tahtouh, F. Halter, and C. Mounaim-Rousselle, “Measurement of Laminar Burning Speeds and Markstein Lengths Using a Novel Methodology,” Combust. Flame 156 (9), 1736–1743 (2009). F. N. Egolfopoulos and C. S. Campbell, “Dynamics and Structure of Dusty Reacting Flows: Inert Particles in Strained, Laminar, Premixed Flames,” Combust. Flame 117 (1/2), 206–226 (1999). Mi Ran Lee, Myung-June Park, Wonjin Jeon, Jae-Wook Choi, Young-Woong Suh, and Dong Jin Suh, “A Kinetic Model for the Oxidative Coupling of Methane Over Na2WO4/Mn/SiO2,” Fuel Proc. Technol. 96, 175–182 (2012). A. A. Zaev and I. V. Prokopovich, “Global Mechanism of Methane Autoignition: Approach and Algorithm of Develoment,” Khim. Fiz. 33 (8), 3–11 (2014). J. Warnatz, W. Maas, and R. W. Dibble, Combustion, Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation (Springer-Verlag, Berlin, 1996).