Catalytic decomposition of N2O on inorganic oxides: Εffect of doping with Au nanoparticles

Molecular Catalysis - Tập 436 - Trang 78-89 - 2017
S.A.C. Carabineiro1, E. Papista2, G.E. Marnellos2,3, P.B. Tavares4, F.J. Maldonado-Hódar5, M. Konsolakis6
1Laboratório de Catálise e Materiais (LCM), Laboratório Associado LSRE-LCM, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
2Department of Mechanical Engineering, University of Western Macedonia, GR-50100, Kozani, Greece
3Chemical Process & Energy Resources Institute, Centre for Research & Technology Hellas, GR-57001, Thessaloniki, Greece
4CQVR Centro de Química – Vila Real, Departamento de Química, Universidade de Trás-os-Montes e Alto Douro, 5001-801, Vila Real, Portugal
5Carbon Research Group, Inorganic Chemistry Department, Faculty of Science, University of Granada, Spain
6School of Production Engineering and Management, Technical University of Crete, 73100 Chania, Greece

Tài liệu tham khảo

Konsolakis, 2015, Recent advances on nitrous oxide (N2O) decomposition over non-noble-metal oxide catalysts: catalytic performance, mechanistic considerations, and surface chemistry aspects, ACS Catal., 6397, 10.1021/acscatal.5b01605 Pérez-Ramı́rez, 2003, Formation and control of N2O in nitric acid production: where do we stand today?, Appl. Catal. B: Environ., 44, 117, 10.1016/S0926-3373(03)00026-2 Pérez-Ramírez, 2007, Prospects of N2O emission regulations in the European fertilizer industry, Appl. Catal. B: Environ., 70, 31, 10.1016/j.apcatb.2005.11.019 Boissel, 2006, Catalytic decomposition of N2O over monolithic supported noble metal-transition metal oxides, Appl. Catal. B: Environ., 64, 234, 10.1016/j.apcatb.2005.12.001 Komvokis, 2011, Catalytic decomposition of N2O over highly active supported Ru nanoparticles (≤3nm) prepared by chemical reduction with ethylene glycol, Appl. Catal. B: Environ., 103, 62, 10.1016/j.apcatb.2011.01.009 Konsolakis, 2013, Insights into the role of SO2 and H2O on the surface characteristics and de-N2O efficiency of Pd/Al2O3 catalysts during N2O decomposition in the presence of CH4 and O2 excess, Appl. Catal. B: Environ., 138–139, 191, 10.1016/j.apcatb.2013.02.038 Konsolakis, 2013, N2O decomposition over doubly-promoted Pt(K)/Al2O3–(CeO2–La2O3) structured catalysts: on the combined effects of promotion and feed composition, Chem. Eng. J., 230, 286, 10.1016/j.cej.2013.06.083 Inger, 2013, Nitrous oxide decomposition in a real nitric acid plant gas stream with a RhOx/Ce0.9Pr0.1O2/alumina catalyst, J. Chem. Technol. Biotechnol., 88, 2233, 10.1002/jctb.4092 Pachatouridou, 2015, Nitrous oxide decomposition over Al2O3 supported noble metals (Pt, Pd, Ir): Effect of metal loading and feed composition, J. Environ. Chem. Eng., 3, 815, 10.1016/j.jece.2015.03.030 Pachatouridou, 2016, N2O decomposition over ceria-promoted Ir/Al2O3 catalysts: the role of ceria, Appl. Catal. B: Environ., 187, 259, 10.1016/j.apcatb.2016.01.049 Russo, 2007, N2O decomposition over perovskite catalysts, Ind. Eng. Chem. Res., 46, 4226, 10.1021/ie0612008 Wu, 2015, Catalytic abatement of NO and N2O from nitric acid plants: a novel approach using noble metal-modified perovskites, J. Catal., 328, 236, 10.1016/j.jcat.2015.02.001 Labhasetwar, 2015, Perovskite-type catalytic materials for environmental applications, Sci. Technol. Adv. Mater., 16, 036002, 10.1088/1468-6996/16/3/036002 Granger, 2016, Catalytic abatement of N2O from stationary sources, 611 Kondratenko, 2010, Mechanism and micro-kinetics of direct N2O decomposition over BaFeAl11O19 hexaaluminate and comparison with Fe-MFI zeolites, Appl. Catal. B: Environ., 99, 66, 10.1016/j.apcatb.2010.05.033 Zhang, 2013, Stabilization mechanism and crystallographic sites of Ru in Fe-promoted barium hexaaluminate under high-temperature condition for N2O decomposition, Appl. Catal. B: Environ., 129, 382, 10.1016/j.apcatb.2012.10.001 Klyushina, 2016, Effect of preparation method on catalytic properties of Co-Mn-Al mixed oxides for N2O decomposition, J. Mol. Catal. A: Chem., 425, 237, 10.1016/j.molcata.2016.10.014 Tian, 2016, Hexaaluminates: a review of the structure, synthesis and catalytic performance, Catal. Sci. Technol., 6, 1984, 10.1039/C5CY02077H Amrousse, 2016, Novel Rh-substituted hexaaluminate catalysts for N2O decomposition, Catal. Sci. Technol., 6, 438, 10.1039/C5CY01380A Abu-Zied, 2015, Enhanced direct N2O decomposition over CuxCo1-xCo2O4 (0.0≤x≤1.0) spinel-oxide catalysts, J. Ind. Eng. Chem., 21, 814, 10.1016/j.jiec.2014.04.017 Zasada, 2015, Reactive oxygen species on the (100) facet of cobalt spinel nanocatalyst and their relevance in 16O2/18O2 isotopic exchange, deN2O, and deCH4 processes—a theoretical and experimental account, ACS Catal., 5, 6879, 10.1021/acscatal.5b01900 Grzybek, 2015, Insights into the twofold role of Cs doping on deN2O activity of cobalt spinel catalyst—towards rational optimization of the precursor and loading, Appl. Catal. B: Environ., 168–169, 509, 10.1016/j.apcatb.2015.01.005 Grzybek, 2016, Strong dispersion effect of cobalt spinel active phase spread over ceria for catalytic N2O decomposition: the role of the interface periphery, Appl. Catal. B: Environ., 180, 622, 10.1016/j.apcatb.2015.07.027 Grzybek, 2017, Thermal stability and repartition of potassium promoter between the support and active phase in the K-Co2.6Zn0.4O4|α-Al2O3 catalyst for N2O decomposition: crucial role of activation temperature on catalytic performance, Appl. Catal. B: Environ., 205, 597, 10.1016/j.apcatb.2017.01.005 Kaczmarczyk, 2016, Thermodynamic stability, redox properties, and reactivity of Mn3O4 Fe3O4, and Co3O4 model catalysts for N2O decomposition: resolving the origins of steady turnover, ACS Catal., 6, 1235, 10.1021/acscatal.5b02642 Obalová, 2006, Structure–activity relationship in the N2O decomposition over Ni-(Mg)-Al and Ni-(Mg)-Mn mixed oxides prepared from hydrotalcite-like precursors, J. Mol. Catal. A: Chem., 248, 210, 10.1016/j.molcata.2005.12.037 Obalová, 2009, Effect of potassium in calcined Co–Mn–Al layered double hydroxide on the catalytic decomposition of N2O, Appl. Catal. B: Environ., 90, 132, 10.1016/j.apcatb.2009.03.002 Konsolakis, 2015, Effect of preparation method on the solid state properties and the deN(2)O performance of CuO-CeO2 oxides, Catal. Sci. Technol., 5, 3714, 10.1039/C5CY00343A Pinaeva, 2016, MeOx/Al2O3 and MeOx/CeO2 (Me=Fe, Co Ni) catalysts for high temperature N2O decomposition and NH3 oxidation, Catal. Sci. Technol., 6, 2150, 10.1039/C5CY01381J Zabilskiy, 2015, Nanoshaped CuO/CeO2 materials: effect of the exposed ceria surfaces on catalytic activity in N2O decomposition reaction, ACS Catal., 5, 5357, 10.1021/acscatal.5b01044 Zabilskiy, 2016, N2O decomposition over CuO/CeO2 catalyst: new insights into reaction mechanism and inhibiting action of H2O and NO by operando techniques, Appl. Catal. B: Environ., 197, 146, 10.1016/j.apcatb.2016.02.024 Inger, 2011, Laboratory and pilot scale synthesis, characterization and reactivity of multicomponent cobalt spinel catalyst for low temperature removal of N2O from nitric acid plant tail gases, Catal. Today, 176, 365, 10.1016/j.cattod.2010.11.044 Obalová, 2013, Alkali metals as promoters in Co–Mn–Al mixed oxide for N2O decomposition, Appl. Catal. A: Gen., 462–463, 227, 10.1016/j.apcata.2013.05.011 Sojka, 1996, EPR investigation of the activation of N2O on Mo/SiO2 catalysts via electron transfer: from N2O as a ligand to adsorbed O-ion, J. Phys. Chem., 100, 14776, 10.1021/jp960871o Pietrzyk, 2007, Computational spectroscopy and DFT investigations into nitrogen and oxygen bond breaking and bond making processes in model deNOx and deN2O reactions, Catal. Today, 119, 219, 10.1016/j.cattod.2006.08.054 Piskorz, 2008, Decomposition of N2O over the surface of cobalt spinel: a DFT account of reactivity experiments, Catal. Today, 137, 418, 10.1016/j.cattod.2008.02.027 Stelmachowski, 2008, Experimental and DFT studies of N2O decomposition over bare and Co-doped magnesium oxide—insights into the role of active sites topology in dry and wet conditions, Catal. Today, 137, 423, 10.1016/j.cattod.2007.11.028 Piskorz, 2011, Computational and experimental investigations into N2O decomposition over MgO nanocrystals from thorough molecular mechanism to ab initio microkinetics, J. Phys. Chem. C, 115, 22451, 10.1021/jp2070826 Piskorz, 2013, DFT modeling of reaction mechanism and ab initio microkinetics of catalytic N2O decomposition over alkaline earth oxides: from molecular orbital picture account to simulation of transient and stationary rate profiles, J. Phys. Chem. C, 117, 18488, 10.1021/jp405459g Fierro-Gonzalez, 2007, Evidence of active species in CO oxidation catalyzed by highly dispersed supported gold, Catal. Today, 122, 201, 10.1016/j.cattod.2007.01.020 Carabineiro, 2012, Nanostructured iron oxide catalysts with gold for the oxidation of carbon monoxide, RSC Adv., 2, 2957, 10.1039/c2ra00724j Zhang, 2012, Recent research progress and applications of nano catalytic materials for CO oxidation, Prog. Chem., 24, 1245 Bond, 2009, Mechanisms of the gold-catalysed water-gas shift, Gold Bull, 42, 337, 10.1007/BF03214956 Barakat, 2013, Gold catalysts in environmental remediation and water-gas shift technologies, Energy Environ. Sci., 6, 371, 10.1039/C2EE22859A Soria, 2014, Effect of the preparation method on the catalytic activity and stability of Au/Fe2O3 catalysts in the low-temperature water-gas shift reaction, Appl. Catal. A: Gen., 470, 45, 10.1016/j.apcata.2013.10.034 Scirè, 2012, Supported gold catalysts for the total oxidation of volatile organic compounds, Appl. Catal. B: Environ., 125, 222, 10.1016/j.apcatb.2012.05.047 Carabineiro, 2015, Gold supported on metal oxides for volatile organic compounds total oxidation, Catal. Today, 244, 103, 10.1016/j.cattod.2014.06.034 Huang, 2015, Low temperature catalytic oxidation of volatile organic compounds: a review, Catal. Sci. Technol., 5, 2649, 10.1039/C4CY01733A Pattrick, 2004, The potential for use of gold in automotive pollution control technologies: a short review, Top. Catal., 30–31, 273, 10.1023/B:TOCA.0000029762.14168.d8 Go, 2009, Immobilization of nanocatalysts on cordierite honeycomb monoliths for low temperature NOx reduction, Appl. Catal. A: Gen., 370, 102, 10.1016/j.apcata.2009.09.027 Miquel, 2010, NO reduction under diesel exhaust conditions over Au/Al2O3 prepared by deposition-precipitation method, J. Mol. Catal. A: Chem., 322, 90, 10.1016/j.molcata.2010.02.024 Gao, 2001, Characterization and catalytic tests of Au/MFI prepared by sublimation of AuCl3 onto HMFI, Catal. Lett., 72, 1, 10.1023/A:1009005731581 Xu, 2009, Preparation of Co-Al mixed oxide-supported gold catalysts and their catalytic activity for N2O decomposition, J. Fuel Chem. Technol., 37, 595, 10.1016/S1872-5813(10)60012-6 Haruta, 2004, Gold as a novel catalyst in the 21st century: preparation, working mechanism and applications, Gold Bull, 37, 27, 10.1007/BF03215514 Hashmi, 2006, Gold catalysis, Angew. Chem. Int. Ed., 45, 7896, 10.1002/anie.200602454 Carabineiro, 2007, Catalytic applications for gold nanotechnology, 377 Sardar, 2009, Gold nanoparticles: past, present, and future, Langmuir, 25, 13840, 10.1021/la9019475 Song, 2010, Preparation and application of porous material supported gold catalysts, Prog. Chem., 22, 573 Zhao, 2013, State of the art in gold nanoparticle synthesis, Coord. Chem. Rev., 257, 638, 10.1016/j.ccr.2012.09.002 Majdalawieh, 2014, Recent advances in gold and silver nanoparticles: synthesis and applications, J. Nanosci. Nanotechnol., 14, 4757, 10.1166/jnn.2014.9526 Kozlov, 1999, A new approach to active supported Au catalysts, Appl. Catal. A: Gen., 182, 9, 10.1016/S0926-860X(98)00424-4 Carabineiro, 2010, Gold catalysis, 89 Bond, 2006 Lopez, 2002, Theoretical study of the Au/TiO2(1 1 0) interface, Surf. Sci., 515, 175, 10.1016/S0039-6028(02)01873-3 Janssens, 2006, Relation between nanoscale Au particle structure and activity for CO oxidation on supported gold catalysts, J. Catal., 240, 108, 10.1016/j.jcat.2006.03.008 Konsolakis, 2016, The role of copper–ceria interactions in catalysis science: recent theoretical and experimental advances, Appl. Catal. B: Environ., 198, 49, 10.1016/j.apcatb.2016.05.037 Schubert, 2001, CO oxidation over supported gold catalysts—inert and active support materials and their role for the oxygen supply during reaction, J. Catal., 197, 113, 10.1006/jcat.2000.3069 Lopez, 2004, The adhesion and shape of nanosized Au particles in a Au/TiO2 catalyst, J. Catal., 225, 86, 10.1016/j.jcat.2004.03.036 Moreau, 2005, Gold on titania catalysts for the oxidation of carbon monoxide: control of pH during preparation with various gold contents, J. Catal., 231, 105, 10.1016/j.jcat.2005.01.030 Brunauer, 1938, Adsorption of gases in multimolecular layers, J. Am. Chem. Soc., 60, 309, 10.1021/ja01269a023 Naumkin, 2012 Dupin, 2000, Systematic XPS studies of metal oxides, hydroxides and peroxides, Phys. Chem. Chem. Phys., 2, 1319, 10.1039/a908800h Santos, 2014, Stabilized gold on cerium-modified cryptomelane: highly active in low-temperature CO oxidation, J. Catal., 309, 58, 10.1016/j.jcat.2013.08.030 Nayak, 2014, Thin film complementary metal oxide semiconductor (CMOS) device using a single-step deposition of the channel layer, Sci. Rep., 4, 4672, 10.1038/srep04672 Turczyniak, 2017, Surface state and catalytic performance of ceria-supported cobalt catalysts in the steam reforming of ethanol, ChemCatChem, 9, 782, 10.1002/cctc.201601343 Lykaki, 2017, Impact of the synthesis parameters on the solid state properties and the CO oxidation performance of ceria nanoparticles, RSC Adv., 7, 6160, 10.1039/C6RA26712B Carabineiro, 2012, Gold on oxide-doped alumina supports as catalysts for CO oxidation, Appl. Nanosci., 2, 35, 10.1007/s13204-011-0037-9 Venezia, 2005, Relationship between structure and CO oxidation activity of ceria-supported gold catalysts, J. Phys. Chem. B, 109, 2821, 10.1021/jp045928i Fu, 2005, Activity and stability of low-content gold-cerium oxide catalysts for the water-gas shift reaction, Appl. Catal. B: Environ., 56, 57, 10.1016/j.apcatb.2004.07.015 Lai, 2006, Effects of the structure of ceria on the activity of gold/ceria catalysts for the oxidation of carbon monoxide and benzene, J. Catal., 237, 303, 10.1016/j.jcat.2005.11.020 Carabineiro, 2010, Exotemplated ceria catalysts with gold for CO oxidation, Appl. Catal. A: Gen., 381, 150, 10.1016/j.apcata.2010.04.001 Carabineiro, 2010, Gold nanoparticles on ceria supports for the oxidation of carbon monoxide, Catal. Today, 154, 21, 10.1016/j.cattod.2010.01.036 Bastos, 2012, Total oxidation of ethyl acetate, ethanol and toluene catalyzed by exotemplated manganese and cerium oxides loaded with gold, Catal. Today, 180, 148, 10.1016/j.cattod.2011.01.049 Jacobs, 2004, Water-gas shift: comparative screening of metal promoters for metal/ceria systems and role of the metal, Appl. Catal. A: Gen., 258, 203, 10.1016/j.apcata.2003.09.007 Khoudiakov, 2005, Au/Fe2O3 nanocatalysts for CO oxidation: a comparative study of deposition-precipitation and coprecipitation techniques, Appl. Catal. A: Gen., 291, 151, 10.1016/j.apcata.2005.01.042 Solsona, 2006, Supported gold catalysts for the total oxidation of alkanes and carbon monoxide, Appl. Catal. A: Gen., 312, 67, 10.1016/j.apcata.2006.06.016 Milone, 2007, A comparative study on the selective hydrogenation of alpha, beta unsaturated aldehyde and ketone to unsaturated alcohols on Au supported catalysts, Catal. Today, 122, 341, 10.1016/j.cattod.2007.01.011 Albonetti, 2010, Catalytic combustion of toluene over cluster-derived gold/iron catalysts, Appl. Catal. A: Gen., 372, 138, 10.1016/j.apcata.2009.10.029 Hua, 2004, Influence of calcination temperature on the structure and catalytic performance of Au/iron oxide catalysts for water-gas shift reaction, Appl. Catal. A: Gen., 259, 121, 10.1016/j.apcata.2003.09.028 Neri, 1999, Au iron oxide catalysts: temperature programmed reduction and X-ray diffraction characterization, Thermochim. Acta, 329, 39, 10.1016/S0040-6031(98)00664-9 PalDey, 2005, Evaluation of a spinel based pigment system as a CO oxidation catalyst, Appl. Catal. B: Environ., 56, 241, 10.1016/j.apcatb.2004.09.013 Hao, 2000, Mechanism of gold activation in supported gold catalysts for CO oxidation, React. Kinet. Catal. Lett., 70, 153, 10.1023/A:1010383220836 Zhang, 2006, Catalytic performance and mechanism of a Pt/TiO2 catalyst for the oxidation of formaldehyde at room temperature, Appl. Catal. B: Environ., 65, 37, 10.1016/j.apcatb.2005.12.010 Wu, 2008, A key to the storage stability of Au/TiO2 catalyst, Phys. Chem. Chem. Phys., 10, 6399, 10.1039/b807040g Hugon, 2008, Supported gold catalysts for selective hydrogenation of 1,3-butadiene in the presence of an excess of alkenes, Gold Bull, 41, 127, 10.1007/BF03216590 Valenzuela, 2002, Preparation, characterization and photocatalytic activity of ZnO Fe2O3 and ZnFe2O4, J. Photochem. Photobiol. A: Chem., 148, 177, 10.1016/S1010-6030(02)00040-0 Liang, 2009, Comparison of reduction behavior of Fe2O3, ZnO and ZnFe2O4 by TPR technique, J. Nat. Gas Chem., 18, 110, 10.1016/S1003-9953(08)60073-0 Armendáriz, 1992, Oxidative dehydrogenation of n-butane on iron-zinc oxide catalysts, Appl. Catal. A: Gen., 92, 29, 10.1016/0926-860X(92)80277-J Carabineiro, 2011, Gold supported on metal oxides for carbon monoxide oxidation, Nano Res., 4, 180, 10.1007/s12274-010-0068-7 Roduner, 2014, Understanding catalysis, Chem. Soc. Rev., 43, 8226, 10.1039/C4CS00210E Ruiz-Martínez, 2005, Effect of operating conditions on the reduction of nitrous oxide by propane over a Fe-zeolite monolith, Appl. Catal. B: Environ., 61, 306, 10.1016/j.apcatb.2005.06.005 Habib, 2014, Selective catalytic reduction of NOx of ship diesel engine exhaust gas with C3H6 over Cu/Y zeolite, ACS Catal., 4, 2479, 10.1021/cs500348b Sabbaghi, 2015, Zr-SBA-15 supported Ni catalysts for lean NOx reduction, J. Mol. Catal. A: Chem., 409, 69, 10.1016/j.molcata.2015.08.005 Tanaka, 2001, Mechanism of O2 desorption during N2O decomposition on an oxidized Rh/USY catalyst, J. Catal., 200, 203, 10.1006/jcat.2001.3197 Parres-Esclapez, 2010, Study by isotopic gases and in situ spectroscopies (DRIFTS, XPS and Raman) of the N2O decomposition mechanism on Rh/CeO2 and Rh/γ-Al2O3 catalysts, J. Catal., 276, 390, 10.1016/j.jcat.2010.10.001