Catalytic conversion of 1,1,1,2-tetrafluoroethane (HFC-134a)

Korean Journal of Chemical Engineering - Tập 35 - Trang 1611-1619 - 2018
Tae Uk Han1, Beom-Sik Yoo1, Young-Min Kim1, ByeongAh Hwang1, Gamal Luckman Sudibya1, Young-Kwon Park2, Seungdo Kim1
1Department of Environmental Sciences and Biotechnology, Hallym University, Chuncheon, Korea
2School of Environmental Engineering, University of Seoul, Seoul, Korea

Tóm tắt

We examined the conversion of HFC-134a over five catalysts, Na2CO3, CaO, CaCO3, and two types of γ-Al2O3 with different surface areas, between 300 and 600 °C. HFC-134a was barely converted via the non-catalytic reaction, even at the highest temperature (600 °C). The operating temperatures for the catalytic conversion of HFC-134a were reduced dramatically and its efficiency increased with increasing temperature. Among the catalysts used, γ-Al2O3 with the larger surface area showed the highest conversion rate of HFC-134a, which was followed, in order, by γ-Al2O3 with the smaller surface area, CaCO3, CaO, and Na2CO3. The conversion rate of γ-Al2O3 decreased rapidly due to catalyst deactivation. The catalytic efficiency of γ-Al2O3 was maintained for a longer period by water addition. Water acted as a hydrogen donor for the dehydrofluorination reaction.

Tài liệu tham khảo

Z. Hausfather, K. Cowtan, D. C. Clarke, P. Jacobs, M. Richardson and R. Rohde, Sci. Adv., 3, 1 (2017). United Nations Framework Convention on Climate Change–The Paris Agreement. http://unfccc.int/paris_agreement/items/9485.php (Accessed 05.11.2017). Montreal Protocol–Achievements to Date and Challenges Ahead. http://ozone.unep.org/en/focus/montreal-protocol-achievementsdate-and-challenges-ahead (Accessed 05.11.2017). UNFCCC 1998. The Kyoto Protocol to the United Nations Framework Convention on Climate Change. https://unfccc.int/resource/docs/convkp/kpeng.pdf (Accessed at 17.11.2017). UNEP 2011. HFCs: A Critical Link in Protecting Climate and the Ozone Layer. United Nations Environment Programme (UNEP). http://www.unenvironment.org/resources/report/hfcs-critical-linkprotecting-climate-and-ozone-layer (Accessed at 05.11.2017). Kigali Amendment to the Montreal Protocol. https://eia-international.org/wp-content/uploads/EIA-Kigali-Amendment-to-the-Montreal-Protocol-FINAL.pdf (Accessed 03.11.2017). T. Mi, J. Han, X. He and L. Qin, Environ. Protect. Eng., 41, 143 (2015). M. Ohno, Y. Ozawa and T. Ono, Int. J. Plasma Environ. Sci. Technol., 1, 159 (2007). Y. S. Mok, V. Demidyuk and J. C. Whitehead, J. Phys. Chem. A, 112, 6586 (2008). M. Jasinski, M. Dors and J. Mizeraczyk, Plasma Chem. Plasma Process., 29, 363 (2009). Narengerile, H. Saito and T. Watanabe, Plasma Chem. Plasma Process., 30, 813 (2010). S.K. Kundu, E. M. Kennedy, J. C. Mackie, C. I. Holdsworth, T. S. Molloy, V.V. Gaikwad and B.Z. Dlugogorski, Chem. Eng. J., 284, 412 (2016). A. Iizuka, H. Ishizaki, A. Mizukoshi, M. Noguchi, A. Yamasaki and Y. Yanagisawa, Ind. Eng. Chem. Res., 50, 11808 (2011). Y. Takita, T. Tanabe, M. Ito, M. Ogura, T. Muraya, S. Yasuda, H. Nishiguchi and T. Ishihara, Ind. Eng. Chem. Res., 41, 2585 (2002). Decomposition of fluoroform (HFC-23) waste streams, https://cdm.unfccc.int/methodologies/PAmethodologies/approved (Accessed 05.11.2017). W. Han, Y. Li, H. Tang and H. Liu, J. Fluorine Chem., 140, 7 (2012). W. Jia, Q. Wu, X. Lang, C. Hu, G. Zhao, J. Li and Z. Zhu, Catal. Lett., 145, 654 (2015). W. Jia, Q. Wu, X. Lang, C. Hu, G. Zhao, J. Li and Z. Zhu, Catal. Sci. Technol., 5, 3103 (2015). Y. Takita, M. Ninomiya, H. Miyake, H. Wakamatsu, Y. Yoshinaga and T. Ishihara, Phys. Chem. Chem. Phys., 1, 4501 (1999). Z.M. El-Bahy, R. Ohnishi and M. Ichikawa, Appl. Catal. B: Environ., 40, 81 (2003). Z.M. El-Bahy, R. Ohnishi and M. Ichikawa, Catal. Today, 90, 283 (2004). J.Y. Jeon, X.-F. Xu, M.H. Choi, H.Y. Kim and Y.-K. Park, Chem. Commun., 11, 1244 (2003). X.-F. Xu, J.Y. Jeon, M. H. Choi, H.Y. Kim, W. C. Choi and Y.-K. Park, J. Mol. Catal. A: Chem., 266, 131 (2007). E. Vileno, M. K. LeClair, S. L. Suib, M.B. Cutlip, F. S. Galasso and S. J. Hardwick, Chem. Mater, 7, 683 (1995). X. Niu, L. Sun, Y. Wang, H. Wu and X. Xu, J. Natural Gas Chem., 19, 463 (2010). X. Xu, L. Sun and Y. Wang, J. Natural Gas Chem., 20, 418 (2011). Y. S. Kim, N.-K. Park and T. J. Lee, Appl. Chem. Eng., 26, 154 (2015). Y. Wang, X. Xu, P. Sheng, H. Li, T. Wang, Y. Huang and F. Liu, J. Natural Gas Chem., 20, 457 (2011). N.-K. Park, H.-G. Park, T. J. Lee, W.-C. Chang and W.-T. Kwon, Catal. Today, 185, 247 (2012). W.B. Feaver and J.A. Rossin, Catal. Today, 54, 13 (1999). H. Onoda, T. Ohta, J. Tamaki and K. Kojima, Appl. Catal. A: Gen., 288, 98 (2005). W. Han, Y. Chen, B. Jin and H. Liu, Greenhouse Gas Sci Technol., 4, 121 (2014). M. S. Gandhi and Y. S. Mok, Int. J. Environ. Sci. Technol., 12, 499 (2015). S. Kowalak, React. Kinet. Catal. Lett., 19, 35 (1982). T. Skapin and E. Kemnitz, Catal. Lett., 40, 241 (1996). O. Boese, W.E. S. Unger, E. Kemnitz and S.L.M. Schroeder, Phys. Chem. Chem. Phys., 4, 2824 (2002). M.M. Farris, A. A. Klinghoffer, J. A. Rossin and D. E. Tevault, Catal. Today, 11, 501 (1992). K. Teinz, S. Wuttke, F. Borno, J. Eicher and E. Kemnitz, J. Catal., 282, 175 (2011). S. Karmakar and H. L. Greene, J. Catal., 151, 394 (1995). H.-G. Park, N.-K. Park, T. J. Lee, W.-C. Chang and W.-T. Kwon, Clean Technol., 18, 83 (2012).