Catalan Numbers, Their Generalization, and Their Uses

Peter Hilton1, Jean Pedersen2
1Department of Mathematical Sciences, State University of New York, 13901, Binghamton, NY, USA
2Department of Mathematics, Santa Clara University, Santa Clara, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

D. André, Solution directe du problème résolu par M. Bertrand,Comptes Rendus Acad. Sci. Paris 105 (1887), 436–7.

A. P. Hillman, G. L. Alexanderson and R. M. Grassl,Discrete and Combinatorial Mathematics, San Francisco: Dellen (1987).

Peter Hilton and Jean Pedersen, Extending the binomial coefficients to preserve symmetry and pattern,Computers Math. Applic. 17 (1–3) (1989), 89–102.

Peter Hilton and Jean Pedersen, The ballot problem and Catalan numbers,Nieuw Archief voor Wiskunde, 1990 (to appear).

A. Hurwitz and R. Courant,Allgemeine Funktionentheorie und elliptische Funktionen. Geometrische Funktionentheorie, Berlin: Springer (1922), 128.

David A. Klarner, Correspondences between plane trees and binary sequences,J. of Comb. Theory 9 (1970), 401–411.

G. Polya and G. Szegö,Aufgaben und Lehrsätze aus der Analysis, Vol. I, Berlin, Göttingen, Heidelberg: Springer (1954), 125.

N. J. A. Sloane,A Handbook of Integer Sequences, New York and London: Academic Press (1973).

Marta Sved, Counting and recounting,Mathematical Intelligencer 5, no. 4 (1983), 21–26.